Dineshkumars's picture
Create app.py
38322f1
import streamlit as st
from PIL import Image
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, GPT2TokenizerFast
import torch
from PIL import Image
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
tokenizer=GPT2TokenizerFast.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
gen_kwargs1 ={"max_length": 4,"num_beams": 2}
gen_kwargs2 ={"max_length": 32,"num_beams": 16}
def predict_step(images):
pixel_values = feature_extractor(images=images, return_tensors='pt').pixel_values
output_ids1 = model.generate(pixel_values)
output_ids2 = model.generate(pixel_values,**gen_kwargs1)
output_ids3 = model.generate(pixel_values,**gen_kwargs2)
preds1 = tokenizer.batch_decode(output_ids1, skip_special_tokens=True)
preds2 = tokenizer.batch_decode(output_ids2, skip_special_tokens=True)
preds3 = tokenizer.batch_decode(output_ids3, skip_special_tokens=True)
preds1 =[pred.strip() for pred in preds1]
preds2 =[pred.strip() for pred in preds2]
preds3 =[pred.strip() for pred in preds3]
return preds1[0],preds2[0],preds3[0]
st.title("Image Caption Generator")
upload_image = st.file_uploader(label='Upload image', type=['png', 'jpg','jpeg'], accept_multiple_files=False)
if upload_image is not None:
image = Image.open(upload_image)
if image.mode != "RGB":
image = image.convert(mode="RGB")
output = predict_step([image])
st.header("Captions are : ")
st.text(output[0])
st.text(output[1])
st.text(output[2])