Dimitrios64 commited on
Commit
8b09cae
1 Parent(s): 2182e9c

Upload 3 files

Browse files
Files changed (3) hide show
  1. Walgreens_AI.png +0 -0
  2. app.py +153 -0
  3. requirements.txt +5 -0
Walgreens_AI.png ADDED
app.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Simple APP for specialty pharmacy
2
+
3
+ # Import packages
4
+ import numpy as np
5
+ import os
6
+
7
+ import gradio as gr
8
+ from transformers import pipeline
9
+
10
+ #Import LLMs
11
+ from langchain.llms import OpenAI
12
+ from langchain.chat_models import ChatOpenAI
13
+
14
+ # Prompt template
15
+ from langchain import PromptTemplate
16
+
17
+ # Chains
18
+ from langchain.chains import LLMChain
19
+
20
+
21
+ # Import "secret" OPENAI_API_KEY
22
+ os.environ["OPENAI_API_KEY"]
23
+
24
+ # Import GPT-4
25
+ llm_gpt = ChatOpenAI(model='gpt-4-0613',temperature=0.)
26
+
27
+ # ======================================================
28
+ # Set up an ASR pipeline using facebook's wav2vec2
29
+ p = pipeline("automatic-speech-recognition", chunk_length_s=40)
30
+
31
+ # =======================================================
32
+ # LLM Chains
33
+
34
+ # Dialogue chain
35
+ template_diag = """
36
+ You are an AI assistant with medical language understanding.
37
+
38
+ The input is a dialogue between a specialty pharmacist and patient: {input}
39
+
40
+ To give you context, the dialogue will have to do about symptoms, side effects, medications etc
41
+ of a rare disease, most probably multiple sclerosis.
42
+
43
+ You have a couple of tasks:
44
+
45
+ - First: If there are some non-sensical words, convert them to the most probable real word,
46
+ taking into account that this is a pharmaxist, so most of them should describe medical conditions
47
+ or symptoms, most probably about multiple sclerosis.
48
+ If a medication is mentioned, do your best to find which is that, if any. Correct any mispellings
49
+ Capitalize the names of the medications.
50
+
51
+ - Second: Convert the text into a dialogue of the form:
52
+
53
+ [Pat]:
54
+ [PRx]:
55
+
56
+ Where [PRx]: Pharmacist, [Pat]: Patient
57
+
58
+ Use your judgement to distinguish between the two roles and who said what.
59
+ Output only this dialogue.
60
+
61
+ Output:
62
+ """
63
+
64
+
65
+ prompt_diag = PromptTemplate(template=template_diag, input_variables=["input"])
66
+ chain_diag = LLMChain(llm=llm_gpt, prompt=prompt_diag, verbose=False)
67
+
68
+
69
+ # ==============================================
70
+ template_struct = """
71
+ You are an AI assistant with medical language understanding.
72
+
73
+ The input is a dialogue between a specialty pharmacist and patient: {input}
74
+
75
+ To give you context, the dialogue will have to do about symptoms, side effects, medications etc
76
+ of a rare disease, most probably multiple sclerosis.
77
+
78
+ Some words may not be clearly spelled, because they come from an automatic
79
+ audio to text transcript.
80
+
81
+ Your have a few tasks:
82
+
83
+ - First task: If there are some non-sensical words, convert them to the most probable real word,
84
+ taking into account that this is a dialogue about a medical condition, probably multiple sclerosis
85
+
86
+ - Second task: extract information from this dialogue
87
+
88
+ Specifically the following:
89
+
90
+ - A brief summary of the dialogue, highlighting the chief complaint
91
+ - The main disease mentioned by the patient
92
+ - Medications mentioned by the patient
93
+ - Side effets mentioned by the patient
94
+
95
+ The output should have the form of a json file with those four keys: (Summary, Disease, Medications, Side_Effects)
96
+
97
+ Do not hallucinate and do not make up information that is not included in the original file.
98
+
99
+ Output:
100
+ """
101
+
102
+ # SOAP notes
103
+ prompt_struct = PromptTemplate(template=template_struct, input_variables=["input"])
104
+ chain_struct = LLMChain(llm=llm_gpt, prompt=prompt_struct, verbose=False)
105
+
106
+
107
+ # Transcription function
108
+ def transcribe(audio):
109
+ #text = fake_audio
110
+ text = p(audio)["text"]
111
+ output_1 = eval(chain_struct.run(text))
112
+ output_2 = chain_diag.run(text)
113
+ summa = output_1['Summary']
114
+ disease = output_1['Disease']
115
+ meds = output_1['Medications']
116
+ sides = output_1['Side_Effects']
117
+ return summa, disease, meds, sides, output_2
118
+
119
+
120
+ #
121
+ with gr.Blocks(title="AI specialty scriber",theme=gr.themes.Soft()) as demo:
122
+
123
+ with gr.Row():
124
+ image_wag = gr.Image(value="Walgreens_AI.png",height=100, width=100, show_label=False,show_download_button=False, scale=1)
125
+ gr.Markdown("## <center> Walgreens AI-powered specialty pharmacy tool </center>")
126
+ #gr.Markdown("**<center>"+scriber_description+"</center>**")
127
+ gr.Markdown("<center> ________________________________________________________________________ </center>")
128
+
129
+ # ====================================================
130
+ # Dictation tool
131
+ gr.Markdown("**Record Patient Interaction**")
132
+ audio = gr.Audio(label='Your recording here',source="microphone", type="filepath",container=True)
133
+ audio_submit_btn = gr.Button(value="Submit Recording", variant="primary")
134
+
135
+ # Clinical notess and transcript
136
+ with gr.Tab("Extracted Information"):
137
+ with gr.Row():
138
+ summary = gr.Textbox(label='Summary',lines=3,interactive=True)
139
+ disease = gr.Textbox(label='Disease mentioned',lines=3,interactive=True)
140
+ with gr.Row():
141
+ medications = gr.Textbox(label='Medications mentioned',lines=3,interactive=True)
142
+ sides = gr.Textbox(label='Side Effects mentioned',lines=3,interactive=True)
143
+
144
+ with gr.Tab("Original Transcript"):
145
+ dialogue = gr.Textbox(label='Full conversation transcript',lines=10)
146
+
147
+ # ===============================================
148
+ # Submit and clear tool
149
+ audio_submit_btn.click(transcribe, inputs = audio, outputs=[summary,disease,medications,sides,dialogue])
150
+ audio_clear_btn = gr.ClearButton([audio,summary,disease,medications,sides,dialogue])
151
+
152
+
153
+ demo.launch(auth=("alliancedemo","wag2046"))
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ gradio==3.40.0
2
+ langchain==0.0.178
3
+ openai==0.27.6
4
+ transformers==4.28.1
5
+ torch==2.0.1