Spaces:
Runtime error
Runtime error
from constants import TOKENIZER_PATH | |
import einops | |
import os | |
import random | |
from pytorch_lightning.callbacks import Callback | |
import torch | |
import torch.nn.functional as F | |
from torchvision import transforms | |
class LogImageTexCallback(Callback): | |
def __init__(self, logger, top_k, max_length): | |
self.logger = logger | |
self.top_k = top_k | |
self.max_length = max_length | |
self.tex_tokenizer = torch.load(TOKENIZER_PATH) | |
self.tensor_to_PIL = transforms.ToPILImage() | |
def on_validation_batch_start(self, trainer, transformer, batch, batch_idx, dataloader_idx): | |
if batch_idx != 0 or dataloader_idx != 0: | |
return | |
sample_id = random.randint(0, len(batch['images']) - 1) | |
image = batch['images'][sample_id] | |
texs_predicted = beam_search_decode(transformer, image, top_k=self.top_k, max_length=self.max_length) | |
image = self.tensor_to_PIL(image) | |
tex_true = self.tex_tokenizer.decode(list(batch['tex_ids'][sample_id].to('cpu', torch.int))) | |
self.logger.log_image(key="samples", images=[image], | |
caption=[f"True: {tex_true}\nPredicted: " + "\n".join(texs_predicted)]) | |
def beam_search_decode(transformer, image, image_transform=None, top_k=10, max_length=100): | |
"""Performs decoding maintaining k best candidates""" | |
def get_tgt_padding_mask(tgt): | |
mask = tgt == tex_tokenizer.token_to_id("[SEP]") | |
mask = torch.cumsum(mask, dim=1) | |
mask = mask.to(transformer.device, torch.bool) | |
return mask | |
if image_transform: | |
image = image_transform(image) | |
assert torch.is_tensor(image) and len(image.shape) == 3, "Image must be a 3 dimensional tensor (c h w)" | |
src = einops.rearrange(image, "c h w -> () c h w").to(transformer.device) | |
memory = transformer.encode(src) | |
tex_tokenizer = torch.load(TOKENIZER_PATH) | |
candidates_tex_ids = [[tex_tokenizer.token_to_id("[CLS]")]] | |
candidates_log_prob = torch.tensor([0], dtype=torch.float, device=transformer.device) | |
while candidates_tex_ids[0][-1] != tex_tokenizer.token_to_id("[SEP]") and len(candidates_tex_ids[0]) < max_length: | |
candidates_tex_ids = torch.tensor(candidates_tex_ids, dtype=torch.float, device=transformer.device) | |
tgt_mask = transformer.transformer.generate_square_subsequent_mask(candidates_tex_ids.shape[1]).to( | |
transformer.device, torch.bool) | |
shared_memories = einops.repeat(memory, f"one n d_model -> ({candidates_tex_ids.shape[0]} one) n d_model") | |
outs = transformer.decode(tgt=candidates_tex_ids, | |
memory=shared_memories, | |
tgt_mask=tgt_mask, | |
memory_mask=None, | |
tgt_padding_mask=get_tgt_padding_mask(candidates_tex_ids)) | |
outs = einops.rearrange(outs, 'b n prob -> b prob n')[:, :, -1] | |
vocab_size = outs.shape[1] | |
outs = F.log_softmax(outs, dim=1) | |
outs += einops.rearrange(candidates_log_prob, "prob -> prob ()") | |
outs = einops.rearrange(outs, 'b prob -> (b prob)') | |
candidates_log_prob, indices = torch.topk(outs, k=top_k) | |
new_candidates = [] | |
for index in indices: | |
candidate_id, token_id = divmod(index.item(), vocab_size) | |
new_candidates.append(candidates_tex_ids[candidate_id].to(int).tolist() + [token_id]) | |
candidates_tex_ids = new_candidates | |
candidates_tex_ids = torch.tensor(candidates_tex_ids) | |
padding_mask = get_tgt_padding_mask(candidates_tex_ids).cpu() | |
candidates_tex_ids = candidates_tex_ids.masked_fill( | |
padding_mask & (candidates_tex_ids != tex_tokenizer.token_to_id("[SEP]")), | |
tex_tokenizer.token_to_id("[PAD]")).tolist() | |
texs = tex_tokenizer.decode_batch(candidates_tex_ids, skip_special_tokens=True) | |
texs = [tex.replace("\\ ", "\\") for tex in texs] | |
return texs | |
def average_checkpoints(model_type, checkpoints_dir): | |
"""Returns model averaged from checkpoints | |
Args: | |
:model_type: -- pytorch_lightning.LightningModule that corresponds to checkpoints | |
:checkpoints_dir: -- path to checkpoints | |
""" | |
checkpoints = [checkpoint.path for checkpoint in os.scandir(checkpoints_dir)] | |
n_models = len(checkpoints) | |
assert n_models > 0 | |
average_model = model_type.load_from_checkpoint(checkpoints[0]) | |
for checkpoint in checkpoints[1:]: | |
model = model_type.load_from_checkpoint(checkpoint) | |
for weight, weight_to_add in zip(average_model.parameters(), model.parameters()): | |
weight.data.add_(weight_to_add.data) | |
for weight in average_model.parameters(): | |
weight.data.divide_(n_models) | |
return average_model | |