Spaces:
Running
on
Zero
Running
on
Zero
Dilshan Irugalbandara
commited on
Commit
·
5bbca05
1
Parent(s):
7c3ef53
API Update
Browse files
app.py
CHANGED
@@ -136,30 +136,6 @@ automasker = AutoMasker(
|
|
136 |
)
|
137 |
|
138 |
|
139 |
-
# Flux-based CatVTON
|
140 |
-
# access_token = os.getenv("HUGGING_FACE_HUB_TOKEN")
|
141 |
-
# flux_repo = "black-forest-labs/FLUX.1-Fill-dev"
|
142 |
-
# pipeline_flux = FluxTryOnPipeline.from_pretrained(flux_repo, use_auth_token=access_token)
|
143 |
-
# pipeline_flux.load_lora_weights(
|
144 |
-
# os.path.join(repo_path, "flux-lora"),
|
145 |
-
# weight_name='pytorch_lora_weights.safetensors'
|
146 |
-
# )
|
147 |
-
# pipeline_flux.to("cuda", init_weight_dtype(args.mixed_precision))
|
148 |
-
|
149 |
-
|
150 |
-
# Mask-free CatVTON
|
151 |
-
# catvton_mf_repo = "zhengchong/CatVTON-MaskFree"
|
152 |
-
# repo_path_mf = snapshot_download(repo_id=catvton_mf_repo, use_auth_token=access_token)
|
153 |
-
# pipeline_p2p = CatVTONPix2PixPipeline(
|
154 |
-
# base_ckpt=args.p2p_base_model_path,
|
155 |
-
# attn_ckpt=repo_path_mf,
|
156 |
-
# attn_ckpt_version="mix-48k-1024",
|
157 |
-
# weight_dtype=init_weight_dtype(args.mixed_precision),
|
158 |
-
# use_tf32=args.allow_tf32,
|
159 |
-
# device='cuda'
|
160 |
-
# )
|
161 |
-
|
162 |
-
|
163 |
@spaces.GPU(duration=120)
|
164 |
def submit_function(
|
165 |
person_image,
|
@@ -170,8 +146,8 @@ def submit_function(
|
|
170 |
seed,
|
171 |
show_type
|
172 |
):
|
173 |
-
person_image
|
174 |
-
mask =
|
175 |
if len(np.unique(np.array(mask))) == 1:
|
176 |
mask = None
|
177 |
else:
|
@@ -239,126 +215,6 @@ def submit_function(
|
|
239 |
new_result_image.paste(result_image, (condition_width + 5, 0))
|
240 |
return new_result_image
|
241 |
|
242 |
-
# @spaces.GPU(duration=120)
|
243 |
-
# def submit_function_p2p(
|
244 |
-
# person_image,
|
245 |
-
# cloth_image,
|
246 |
-
# num_inference_steps,
|
247 |
-
# guidance_scale,
|
248 |
-
# seed):
|
249 |
-
# person_image= person_image["background"]
|
250 |
-
|
251 |
-
# tmp_folder = args.output_dir
|
252 |
-
# date_str = datetime.now().strftime("%Y%m%d%H%M%S")
|
253 |
-
# result_save_path = os.path.join(tmp_folder, date_str[:8], date_str[8:] + ".png")
|
254 |
-
# if not os.path.exists(os.path.join(tmp_folder, date_str[:8])):
|
255 |
-
# os.makedirs(os.path.join(tmp_folder, date_str[:8]))
|
256 |
-
|
257 |
-
# generator = None
|
258 |
-
# if seed != -1:
|
259 |
-
# generator = torch.Generator(device='cuda').manual_seed(seed)
|
260 |
-
|
261 |
-
# person_image = Image.open(person_image).convert("RGB")
|
262 |
-
# cloth_image = Image.open(cloth_image).convert("RGB")
|
263 |
-
# person_image = resize_and_crop(person_image, (args.width, args.height))
|
264 |
-
# cloth_image = resize_and_padding(cloth_image, (args.width, args.height))
|
265 |
-
|
266 |
-
# # Inference
|
267 |
-
# try:
|
268 |
-
# result_image = pipeline_p2p(
|
269 |
-
# image=person_image,
|
270 |
-
# condition_image=cloth_image,
|
271 |
-
# num_inference_steps=num_inference_steps,
|
272 |
-
# guidance_scale=guidance_scale,
|
273 |
-
# generator=generator
|
274 |
-
# )[0]
|
275 |
-
# except Exception as e:
|
276 |
-
# raise gr.Error(
|
277 |
-
# "An error occurred. Please try again later: {}".format(e)
|
278 |
-
# )
|
279 |
-
|
280 |
-
# # Post-process
|
281 |
-
# save_result_image = image_grid([person_image, cloth_image, result_image], 1, 3)
|
282 |
-
# save_result_image.save(result_save_path)
|
283 |
-
# return result_image
|
284 |
-
|
285 |
-
# @spaces.GPU(duration=120)
|
286 |
-
# def submit_function_flux(
|
287 |
-
# person_image,
|
288 |
-
# cloth_image,
|
289 |
-
# cloth_type,
|
290 |
-
# num_inference_steps,
|
291 |
-
# guidance_scale,
|
292 |
-
# seed,
|
293 |
-
# show_type
|
294 |
-
# ):
|
295 |
-
|
296 |
-
# # Process image editor input
|
297 |
-
# person_image, mask = person_image["background"], person_image["layers"][0]
|
298 |
-
# mask = Image.open(mask).convert("L")
|
299 |
-
# if len(np.unique(np.array(mask))) == 1:
|
300 |
-
# mask = None
|
301 |
-
# else:
|
302 |
-
# mask = np.array(mask)
|
303 |
-
# mask[mask > 0] = 255
|
304 |
-
# mask = Image.fromarray(mask)
|
305 |
-
|
306 |
-
# # Set random seed
|
307 |
-
# generator = None
|
308 |
-
# if seed != -1:
|
309 |
-
# generator = torch.Generator(device='cuda').manual_seed(seed)
|
310 |
-
|
311 |
-
# # Process input images
|
312 |
-
# person_image = Image.open(person_image).convert("RGB")
|
313 |
-
# cloth_image = Image.open(cloth_image).convert("RGB")
|
314 |
-
|
315 |
-
# # Adjust image sizes
|
316 |
-
# person_image = resize_and_crop(person_image, (args.width, args.height))
|
317 |
-
# cloth_image = resize_and_padding(cloth_image, (args.width, args.height))
|
318 |
-
|
319 |
-
# # Process mask
|
320 |
-
# if mask is not None:
|
321 |
-
# mask = resize_and_crop(mask, (args.width, args.height))
|
322 |
-
# else:
|
323 |
-
# mask = automasker(
|
324 |
-
# person_image,
|
325 |
-
# cloth_type
|
326 |
-
# )['mask']
|
327 |
-
# mask = mask_processor.blur(mask, blur_factor=9)
|
328 |
-
|
329 |
-
# # Inference
|
330 |
-
# result_image = pipeline_flux(
|
331 |
-
# image=person_image,
|
332 |
-
# condition_image=cloth_image,
|
333 |
-
# mask_image=mask,
|
334 |
-
# width=args.width,
|
335 |
-
# height=args.height,
|
336 |
-
# num_inference_steps=num_inference_steps,
|
337 |
-
# guidance_scale=guidance_scale,
|
338 |
-
# generator=generator
|
339 |
-
# ).images[0]
|
340 |
-
|
341 |
-
# # Post-processing
|
342 |
-
# masked_person = vis_mask(person_image, mask)
|
343 |
-
|
344 |
-
# # Return result based on show type
|
345 |
-
# if show_type == "result only":
|
346 |
-
# return result_image
|
347 |
-
# else:
|
348 |
-
# width, height = person_image.size
|
349 |
-
# if show_type == "input & result":
|
350 |
-
# condition_width = width // 2
|
351 |
-
# conditions = image_grid([person_image, cloth_image], 2, 1)
|
352 |
-
# else:
|
353 |
-
# condition_width = width // 3
|
354 |
-
# conditions = image_grid([person_image, masked_person, cloth_image], 3, 1)
|
355 |
-
|
356 |
-
# conditions = conditions.resize((condition_width, height), Image.NEAREST)
|
357 |
-
# new_result_image = Image.new("RGB", (width + condition_width + 5, height))
|
358 |
-
# new_result_image.paste(conditions, (0, 0))
|
359 |
-
# new_result_image.paste(result_image, (condition_width + 5, 0))
|
360 |
-
# return new_result_image
|
361 |
-
|
362 |
|
363 |
def person_example_fn(image_path):
|
364 |
return image_path
|
@@ -502,247 +358,6 @@ def app_gradio():
|
|
502 |
],
|
503 |
result_image,
|
504 |
)
|
505 |
-
|
506 |
-
# with gr.Tab("Mask-based & Flux.1 Fill Dev"):
|
507 |
-
# with gr.Row():
|
508 |
-
# with gr.Column(scale=1, min_width=350):
|
509 |
-
# with gr.Row():
|
510 |
-
# image_path_flux = gr.Image(
|
511 |
-
# type="filepath",
|
512 |
-
# interactive=True,
|
513 |
-
# visible=False,
|
514 |
-
# )
|
515 |
-
# person_image_flux = gr.ImageEditor(
|
516 |
-
# interactive=True, label="Person Image", type="filepath"
|
517 |
-
# )
|
518 |
-
|
519 |
-
# with gr.Row():
|
520 |
-
# with gr.Column(scale=1, min_width=230):
|
521 |
-
# cloth_image_flux = gr.Image(
|
522 |
-
# interactive=True, label="Condition Image", type="filepath"
|
523 |
-
# )
|
524 |
-
# with gr.Column(scale=1, min_width=120):
|
525 |
-
# gr.Markdown(
|
526 |
-
# '<span style="color: #808080; font-size: small;">Two ways to provide Mask:<br>1. Upload the person image and use the `🖌️` above to draw the Mask (higher priority)<br>2. Select the `Try-On Cloth Type` to generate automatically </span>'
|
527 |
-
# )
|
528 |
-
# cloth_type = gr.Radio(
|
529 |
-
# label="Try-On Cloth Type",
|
530 |
-
# choices=["upper", "lower", "overall"],
|
531 |
-
# value="upper",
|
532 |
-
# )
|
533 |
-
|
534 |
-
# submit_flux = gr.Button("Submit")
|
535 |
-
# gr.Markdown(
|
536 |
-
# '<center><span style="color: #FF0000">!!! Click only Once, Wait for Delay !!!</span></center>'
|
537 |
-
# )
|
538 |
-
|
539 |
-
# with gr.Accordion("Advanced Options", open=False):
|
540 |
-
# num_inference_steps_flux = gr.Slider(
|
541 |
-
# label="Inference Step", minimum=10, maximum=100, step=5, value=50
|
542 |
-
# )
|
543 |
-
# # Guidence Scale
|
544 |
-
# guidance_scale_flux = gr.Slider(
|
545 |
-
# label="CFG Strenth", minimum=0.0, maximum=50, step=0.5, value=30
|
546 |
-
# )
|
547 |
-
# # Random Seed
|
548 |
-
# seed_flux = gr.Slider(
|
549 |
-
# label="Seed", minimum=-1, maximum=10000, step=1, value=42
|
550 |
-
# )
|
551 |
-
# show_type = gr.Radio(
|
552 |
-
# label="Show Type",
|
553 |
-
# choices=["result only", "input & result", "input & mask & result"],
|
554 |
-
# value="input & mask & result",
|
555 |
-
# )
|
556 |
-
|
557 |
-
# with gr.Column(scale=2, min_width=500):
|
558 |
-
# result_image_flux = gr.Image(interactive=False, label="Result")
|
559 |
-
# with gr.Row():
|
560 |
-
# # Photo Examples
|
561 |
-
# root_path = "resource/demo/example"
|
562 |
-
# with gr.Column():
|
563 |
-
# gr.Examples(
|
564 |
-
# examples=[
|
565 |
-
# os.path.join(root_path, "person", "men", _)
|
566 |
-
# for _ in os.listdir(os.path.join(root_path, "person", "men"))
|
567 |
-
# ],
|
568 |
-
# examples_per_page=4,
|
569 |
-
# inputs=image_path_flux,
|
570 |
-
# label="Person Examples ①",
|
571 |
-
# )
|
572 |
-
# gr.Examples(
|
573 |
-
# examples=[
|
574 |
-
# os.path.join(root_path, "person", "women", _)
|
575 |
-
# for _ in os.listdir(os.path.join(root_path, "person", "women"))
|
576 |
-
# ],
|
577 |
-
# examples_per_page=4,
|
578 |
-
# inputs=image_path_flux,
|
579 |
-
# label="Person Examples ②",
|
580 |
-
# )
|
581 |
-
# gr.Markdown(
|
582 |
-
# '<span style="color: #808080; font-size: small;">*Person examples come from the demos of <a href="https://huggingface.co/spaces/levihsu/OOTDiffusion">OOTDiffusion</a> and <a href="https://www.outfitanyone.org">OutfitAnyone</a>. </span>'
|
583 |
-
# )
|
584 |
-
# with gr.Column():
|
585 |
-
# gr.Examples(
|
586 |
-
# examples=[
|
587 |
-
# os.path.join(root_path, "condition", "upper", _)
|
588 |
-
# for _ in os.listdir(os.path.join(root_path, "condition", "upper"))
|
589 |
-
# ],
|
590 |
-
# examples_per_page=4,
|
591 |
-
# inputs=cloth_image_flux,
|
592 |
-
# label="Condition Upper Examples",
|
593 |
-
# )
|
594 |
-
# gr.Examples(
|
595 |
-
# examples=[
|
596 |
-
# os.path.join(root_path, "condition", "overall", _)
|
597 |
-
# for _ in os.listdir(os.path.join(root_path, "condition", "overall"))
|
598 |
-
# ],
|
599 |
-
# examples_per_page=4,
|
600 |
-
# inputs=cloth_image_flux,
|
601 |
-
# label="Condition Overall Examples",
|
602 |
-
# )
|
603 |
-
# condition_person_exm = gr.Examples(
|
604 |
-
# examples=[
|
605 |
-
# os.path.join(root_path, "condition", "person", _)
|
606 |
-
# for _ in os.listdir(os.path.join(root_path, "condition", "person"))
|
607 |
-
# ],
|
608 |
-
# examples_per_page=4,
|
609 |
-
# inputs=cloth_image_flux,
|
610 |
-
# label="Condition Reference Person Examples",
|
611 |
-
# )
|
612 |
-
# gr.Markdown(
|
613 |
-
# '<span style="color: #808080; font-size: small;">*Condition examples come from the Internet. </span>'
|
614 |
-
# )
|
615 |
-
|
616 |
-
|
617 |
-
# image_path_flux.change(
|
618 |
-
# person_example_fn, inputs=image_path_flux, outputs=person_image_flux
|
619 |
-
# )
|
620 |
-
|
621 |
-
# submit_flux.click(
|
622 |
-
# submit_function_flux,
|
623 |
-
# [person_image_flux, cloth_image_flux, cloth_type, num_inference_steps_flux, guidance_scale_flux, seed_flux, show_type],
|
624 |
-
# result_image_flux,
|
625 |
-
# )
|
626 |
-
|
627 |
-
|
628 |
-
# with gr.Tab("Mask-free & SD1.5"):
|
629 |
-
# with gr.Row():
|
630 |
-
# with gr.Column(scale=1, min_width=350):
|
631 |
-
# with gr.Row():
|
632 |
-
# image_path_p2p = gr.Image(
|
633 |
-
# type="filepath",
|
634 |
-
# interactive=True,
|
635 |
-
# visible=False,
|
636 |
-
# )
|
637 |
-
# person_image_p2p = gr.ImageEditor(
|
638 |
-
# interactive=True, label="Person Image", type="filepath"
|
639 |
-
# )
|
640 |
-
|
641 |
-
# with gr.Row():
|
642 |
-
# with gr.Column(scale=1, min_width=230):
|
643 |
-
# cloth_image_p2p = gr.Image(
|
644 |
-
# interactive=True, label="Condition Image", type="filepath"
|
645 |
-
# )
|
646 |
-
|
647 |
-
# submit_p2p = gr.Button("Submit")
|
648 |
-
# gr.Markdown(
|
649 |
-
# '<center><span style="color: #FF0000">!!! Click only Once, Wait for Delay !!!</span></center>'
|
650 |
-
# )
|
651 |
-
|
652 |
-
# gr.Markdown(
|
653 |
-
# '<span style="color: #808080; font-size: small;">Advanced options can adjust details:<br>1. `Inference Step` may enhance details;<br>2. `CFG` is highly correlated with saturation;<br>3. `Random seed` may improve pseudo-shadow.</span>'
|
654 |
-
# )
|
655 |
-
# with gr.Accordion("Advanced Options", open=False):
|
656 |
-
# num_inference_steps_p2p = gr.Slider(
|
657 |
-
# label="Inference Step", minimum=10, maximum=100, step=5, value=50
|
658 |
-
# )
|
659 |
-
# # Guidence Scale
|
660 |
-
# guidance_scale_p2p = gr.Slider(
|
661 |
-
# label="CFG Strenth", minimum=0.0, maximum=7.5, step=0.5, value=2.5
|
662 |
-
# )
|
663 |
-
# # Random Seed
|
664 |
-
# seed_p2p = gr.Slider(
|
665 |
-
# label="Seed", minimum=-1, maximum=10000, step=1, value=42
|
666 |
-
# )
|
667 |
-
# # show_type = gr.Radio(
|
668 |
-
# # label="Show Type",
|
669 |
-
# # choices=["result only", "input & result", "input & mask & result"],
|
670 |
-
# # value="input & mask & result",
|
671 |
-
# # )
|
672 |
-
|
673 |
-
# with gr.Column(scale=2, min_width=500):
|
674 |
-
# result_image_p2p = gr.Image(interactive=False, label="Result")
|
675 |
-
# with gr.Row():
|
676 |
-
# # Photo Examples
|
677 |
-
# root_path = "resource/demo/example"
|
678 |
-
# with gr.Column():
|
679 |
-
# gr.Examples(
|
680 |
-
# examples=[
|
681 |
-
# os.path.join(root_path, "person", "men", _)
|
682 |
-
# for _ in os.listdir(os.path.join(root_path, "person", "men"))
|
683 |
-
# ],
|
684 |
-
# examples_per_page=4,
|
685 |
-
# inputs=image_path_p2p,
|
686 |
-
# label="Person Examples ①",
|
687 |
-
# )
|
688 |
-
# gr.Examples(
|
689 |
-
# examples=[
|
690 |
-
# os.path.join(root_path, "person", "women", _)
|
691 |
-
# for _ in os.listdir(os.path.join(root_path, "person", "women"))
|
692 |
-
# ],
|
693 |
-
# examples_per_page=4,
|
694 |
-
# inputs=image_path_p2p,
|
695 |
-
# label="Person Examples ②",
|
696 |
-
# )
|
697 |
-
# gr.Markdown(
|
698 |
-
# '<span style="color: #808080; font-size: small;">*Person examples come from the demos of <a href="https://huggingface.co/spaces/levihsu/OOTDiffusion">OOTDiffusion</a> and <a href="https://www.outfitanyone.org">OutfitAnyone</a>. </span>'
|
699 |
-
# )
|
700 |
-
# with gr.Column():
|
701 |
-
# gr.Examples(
|
702 |
-
# examples=[
|
703 |
-
# os.path.join(root_path, "condition", "upper", _)
|
704 |
-
# for _ in os.listdir(os.path.join(root_path, "condition", "upper"))
|
705 |
-
# ],
|
706 |
-
# examples_per_page=4,
|
707 |
-
# inputs=cloth_image_p2p,
|
708 |
-
# label="Condition Upper Examples",
|
709 |
-
# )
|
710 |
-
# gr.Examples(
|
711 |
-
# examples=[
|
712 |
-
# os.path.join(root_path, "condition", "overall", _)
|
713 |
-
# for _ in os.listdir(os.path.join(root_path, "condition", "overall"))
|
714 |
-
# ],
|
715 |
-
# examples_per_page=4,
|
716 |
-
# inputs=cloth_image_p2p,
|
717 |
-
# label="Condition Overall Examples",
|
718 |
-
# )
|
719 |
-
# condition_person_exm = gr.Examples(
|
720 |
-
# examples=[
|
721 |
-
# os.path.join(root_path, "condition", "person", _)
|
722 |
-
# for _ in os.listdir(os.path.join(root_path, "condition", "person"))
|
723 |
-
# ],
|
724 |
-
# examples_per_page=4,
|
725 |
-
# inputs=cloth_image_p2p,
|
726 |
-
# label="Condition Reference Person Examples",
|
727 |
-
# )
|
728 |
-
# gr.Markdown(
|
729 |
-
# '<span style="color: #808080; font-size: small;">*Condition examples come from the Internet. </span>'
|
730 |
-
# )
|
731 |
-
|
732 |
-
# image_path_p2p.change(
|
733 |
-
# person_example_fn, inputs=image_path_p2p, outputs=person_image_p2p
|
734 |
-
# )
|
735 |
-
|
736 |
-
# submit_p2p.click(
|
737 |
-
# submit_function_p2p,
|
738 |
-
# [
|
739 |
-
# person_image_p2p,
|
740 |
-
# cloth_image_p2p,
|
741 |
-
# num_inference_steps_p2p,
|
742 |
-
# guidance_scale_p2p,
|
743 |
-
# seed_p2p],
|
744 |
-
# result_image_p2p,
|
745 |
-
# )
|
746 |
|
747 |
demo.queue().launch(share=True, show_error=True)
|
748 |
|
|
|
136 |
)
|
137 |
|
138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
@spaces.GPU(duration=120)
|
140 |
def submit_function(
|
141 |
person_image,
|
|
|
146 |
seed,
|
147 |
show_type
|
148 |
):
|
149 |
+
person_image = person_image if isinstance(person_image, str) else person_image["background"]
|
150 |
+
mask = None # Ignore the mask if not provided
|
151 |
if len(np.unique(np.array(mask))) == 1:
|
152 |
mask = None
|
153 |
else:
|
|
|
215 |
new_result_image.paste(result_image, (condition_width + 5, 0))
|
216 |
return new_result_image
|
217 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
|
219 |
def person_example_fn(image_path):
|
220 |
return image_path
|
|
|
358 |
],
|
359 |
result_image,
|
360 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
361 |
|
362 |
demo.queue().launch(share=True, show_error=True)
|
363 |
|