Yaz Hobooti commited on
Commit
828bfe1
·
1 Parent(s): e4d5933

Replace barcode reader with robust ZXing-CPP implementation

Browse files
Files changed (4) hide show
  1. app.py +4 -4
  2. barcode_reader.py +317 -0
  3. barcode_utils.py +0 -169
  4. requirements.txt +3 -2
app.py CHANGED
@@ -52,7 +52,7 @@ except Exception:
52
  HAS_REGEX = False
53
 
54
  try:
55
- from barcode_utils import read_barcodes_from_path
56
  HAS_BARCODE = True
57
  except Exception:
58
  read_barcodes_from_path = None
@@ -1117,10 +1117,10 @@ def compare_pdfs(file_a, file_b):
1117
  print(f"Spell check results - A: {len(misspell_a)} boxes, B: {len(misspell_b)} boxes")
1118
 
1119
  if HAS_BARCODE:
1120
- # Use new barcode detection from barcode_utils
1121
  try:
1122
- codes_a = read_barcodes_from_path(file_a.name, max_pages=5, raster_dpi=900)
1123
- codes_b = read_barcodes_from_path(file_b.name, max_pages=5, raster_dpi=900)
1124
 
1125
  # Convert to old format for compatibility
1126
  bar_a, info_a = [], []
 
52
  HAS_REGEX = False
53
 
54
  try:
55
+ from barcode_reader import read_barcodes_from_path
56
  HAS_BARCODE = True
57
  except Exception:
58
  read_barcodes_from_path = None
 
1117
  print(f"Spell check results - A: {len(misspell_a)} boxes, B: {len(misspell_b)} boxes")
1118
 
1119
  if HAS_BARCODE:
1120
+ # Use new barcode detection from barcode_reader
1121
  try:
1122
+ codes_a = read_barcodes_from_path(file_a.name, max_pages=8, raster_dpis=(400, 600, 900))
1123
+ codes_b = read_barcodes_from_path(file_b.name, max_pages=8, raster_dpis=(400, 600, 900))
1124
 
1125
  # Convert to old format for compatibility
1126
  bar_a, info_a = [], []
barcode_reader.py ADDED
@@ -0,0 +1,317 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Robust barcode reader for images and PDFs.
3
+
4
+ Strategy (in order):
5
+ 1) PDF -> extract embedded image XObjects at native resolution (no raster loss) and decode.
6
+ 2) If nothing found, rasterize PDF page(s) at high DPI (400/600/900) and decode.
7
+ 3) For plain images, decode directly.
8
+
9
+ Engines:
10
+ - Primary: ZXing-CPP (zxingcpp) -> no system packages required
11
+ - Fallback: OpenCV contrib barcode (if available)
12
+
13
+ Outputs are normalized dicts:
14
+ { 'engine', 'source', 'page', 'type', 'text', 'polygon': [[x,y] * 4] }
15
+ """
16
+
17
+ from __future__ import annotations
18
+ import io
19
+ import os
20
+ from typing import Any, Dict, List, Tuple, Optional
21
+
22
+ import numpy as np
23
+ from PIL import Image
24
+ import cv2
25
+
26
+ # ---------- Engines ----------
27
+ HAS_ZXING = False
28
+ try:
29
+ import zxingcpp # pip install zxing-cpp
30
+ HAS_ZXING = True
31
+ except Exception:
32
+ zxingcpp = None
33
+ HAS_ZXING = False
34
+
35
+ HAS_OCV_BARCODE = hasattr(cv2, "barcode") and hasattr(getattr(cv2, "barcode"), "BarcodeDetector")
36
+
37
+ # ---------- PDF (PyMuPDF) ----------
38
+ try:
39
+ import fitz # PyMuPDF
40
+ HAS_PYMUPDF = True
41
+ except Exception:
42
+ fitz = None
43
+ HAS_PYMUPDF = False
44
+
45
+
46
+ # =========================
47
+ # Utils
48
+ # =========================
49
+
50
+ def _to_bgr(img: Image.Image) -> np.ndarray:
51
+ arr = np.array(img.convert("RGB"))
52
+ return cv2.cvtColor(arr, cv2.COLOR_RGB2BGR)
53
+
54
+ def _as_gray(arr_bgr: np.ndarray) -> np.ndarray:
55
+ return cv2.cvtColor(arr_bgr, cv2.COLOR_BGR2GRAY)
56
+
57
+ def _preprocess_candidates(bgr: np.ndarray) -> List[np.ndarray]:
58
+ """
59
+ Generate a small set of preprocess variants to improve 1D and 2D decoding.
60
+ Keep this list short—HF Spaces need to stay responsive.
61
+ """
62
+ out = [bgr]
63
+ h, w = bgr.shape[:2]
64
+
65
+ # Slight sharpening helps thin 1D bars
66
+ k = np.array([[0, -1, 0],
67
+ [-1, 5, -1],
68
+ [0, -1, 0]], dtype=np.float32)
69
+ sharp = cv2.filter2D(bgr, -1, k)
70
+ out.append(sharp)
71
+
72
+ # CLAHE on gray
73
+ g = _as_gray(bgr)
74
+ clahe = cv2.createCLAHE(clipLimit=2.5, tileGridSize=(8, 8)).apply(g)
75
+ out.append(cv2.cvtColor(clahe, cv2.COLOR_GRAY2BGR))
76
+
77
+ # Slight upscale for tiny barcodes
78
+ if max(h, w) < 1600:
79
+ up = cv2.resize(bgr, (0, 0), fx=1.5, fy=1.5, interpolation=cv2.INTER_CUBIC)
80
+ out.append(up)
81
+
82
+ return out
83
+
84
+ def _norm_polygon(pts: Any, w: int, h: int) -> List[List[float]]:
85
+ """
86
+ Normalize whatever the engine returns into 4 point polygon [[x,y],...].
87
+ If fewer than 4 points are given, approximate with a bounding box.
88
+ """
89
+ try:
90
+ p = np.array(pts, dtype=np.float32).reshape(-1, 2)
91
+ if p.shape[0] >= 4:
92
+ p = p[:4]
93
+ else:
94
+ # make a box
95
+ x1, y1 = p.min(axis=0)
96
+ x2, y2 = p.max(axis=0)
97
+ p = np.array([[x1, y1], [x2, y1], [x2, y2], [x1, y2]], dtype=np.float32)
98
+ except Exception:
99
+ p = np.array([[0, 0], [w, 0], [w, h], [0, h]], dtype=np.float32)
100
+ return p.astype(float).tolist()
101
+
102
+ def _dedupe(results: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
103
+ """
104
+ Deduplicate by (text, type) and polygon IoU.
105
+ """
106
+ keep: List[Dict[str, Any]] = []
107
+ def iou(a, b):
108
+ ax = np.array(a["polygon"], dtype=np.float32)
109
+ bx = np.array(b["polygon"], dtype=np.float32)
110
+ a_min = ax.min(axis=0); a_max = ax.max(axis=0)
111
+ b_min = bx.min(axis=0); b_max = bx.max(axis=0)
112
+ inter_min = np.maximum(a_min, b_min)
113
+ inter_max = np.minimum(a_max, b_max)
114
+ wh = np.maximum(inter_max - inter_min, 0)
115
+ inter = wh[0] * wh[1]
116
+ a_area = (a_max - a_min).prod()
117
+ b_area = (b_max - b_min).prod()
118
+ union = max(a_area + b_area - inter, 1e-6)
119
+ return float(inter / union)
120
+ for r in results:
121
+ dup = False
122
+ for k in keep:
123
+ if r["text"] == k["text"] and r["type"] == k["type"] and iou(r, k) > 0.7:
124
+ dup = True
125
+ break
126
+ if not dup:
127
+ keep.append(r)
128
+ return keep
129
+
130
+
131
+ # =========================
132
+ # Decoders
133
+ # =========================
134
+
135
+ def _decode_zxing(bgr: np.ndarray) -> List[Dict[str, Any]]:
136
+ if not HAS_ZXING:
137
+ return []
138
+ hits: List[Dict[str, Any]] = []
139
+ # ZXing works on gray or color; we'll try a couple of variants
140
+ for candidate in _preprocess_candidates(bgr):
141
+ try:
142
+ res = zxingcpp.read_barcodes(candidate) # returns list
143
+ except Exception:
144
+ continue
145
+ for r in res or []:
146
+ try:
147
+ fmt = getattr(r.format, "name", str(r.format))
148
+ except Exception:
149
+ fmt = str(r.format)
150
+ poly = []
151
+ try:
152
+ pos = r.position # list of points with .x/.y
153
+ poly = [[float(pt.x), float(pt.y)] for pt in pos]
154
+ except Exception:
155
+ h, w = candidate.shape[:2]
156
+ poly = _norm_polygon([], w, h)
157
+ hits.append({
158
+ "engine": "zxingcpp",
159
+ "type": fmt,
160
+ "text": r.text or "",
161
+ "polygon": poly,
162
+ })
163
+ if hits:
164
+ break # good enough
165
+ return hits
166
+
167
+
168
+ def _decode_opencv(bgr: np.ndarray) -> List[Dict[str, Any]]:
169
+ if not HAS_OCV_BARCODE:
170
+ return []
171
+ det = cv2.barcode.BarcodeDetector()
172
+ hits: List[Dict[str, Any]] = []
173
+ for candidate in _preprocess_candidates(bgr):
174
+ gray = _as_gray(candidate)
175
+ ok, infos, types, corners = det.detectAndDecode(gray)
176
+ if not ok:
177
+ continue
178
+ for txt, typ, pts in zip(infos, types, corners):
179
+ if not txt:
180
+ continue
181
+ h, w = candidate.shape[:2]
182
+ poly = _norm_polygon(pts, w, h)
183
+ hits.append({
184
+ "engine": "opencv_barcode",
185
+ "type": typ,
186
+ "text": txt,
187
+ "polygon": poly,
188
+ })
189
+ if hits:
190
+ break
191
+ return hits
192
+
193
+
194
+ def _decode_any(bgr: np.ndarray) -> List[Dict[str, Any]]:
195
+ # Prefer ZXing; it's generally stronger across symbologies
196
+ res = _decode_zxing(bgr)
197
+ if res:
198
+ return res
199
+ return _decode_opencv(bgr)
200
+
201
+
202
+ # =========================
203
+ # Image & PDF readers
204
+ # =========================
205
+
206
+ def _pdf_extract_xobject_images(path: str, page_index: Optional[int] = None) -> List[Tuple[int, np.ndarray]]:
207
+ """
208
+ Return (page, image_bgr) tuples for image XObjects extracted at native resolution.
209
+ """
210
+ if not HAS_PYMUPDF:
211
+ return []
212
+ out: List[Tuple[int, np.ndarray]] = []
213
+ doc = fitz.open(path)
214
+ pages = range(len(doc)) if page_index is None else [page_index]
215
+ for pno in pages:
216
+ page = doc[pno]
217
+ for info in page.get_images(full=True):
218
+ xref = info[0]
219
+ pix = fitz.Pixmap(doc, xref)
220
+ # Convert to RGB if not already
221
+ if pix.n >= 4: # includes alpha or CMYK+alpha
222
+ pix = fitz.Pixmap(fitz.csRGB, pix)
223
+ pil = Image.open(io.BytesIO(pix.tobytes("png"))).convert("RGB")
224
+ out.append((pno, _to_bgr(pil)))
225
+ doc.close()
226
+ return out
227
+
228
+
229
+ def _pdf_render_page(path: str, page: int, dpi: int) -> np.ndarray:
230
+ """
231
+ Rasterize one page at the given DPI (for vector codes).
232
+ """
233
+ if not HAS_PYMUPDF:
234
+ raise RuntimeError("PyMuPDF not available; cannot rasterize PDF.")
235
+ doc = fitz.open(path)
236
+ if page >= len(doc):
237
+ doc.close()
238
+ raise ValueError(f"Page {page} out of range; PDF has {len(doc)} pages.")
239
+ pg = doc[page]
240
+ scale = dpi / 72.0
241
+ mat = fitz.Matrix(scale, scale)
242
+ pix = pg.get_pixmap(matrix=mat, alpha=False)
243
+ pil = Image.open(io.BytesIO(pix.tobytes("png"))).convert("RGB")
244
+ doc.close()
245
+ return _to_bgr(pil)
246
+
247
+
248
+ def _decode_image_path(path: str) -> List[Dict[str, Any]]:
249
+ pil = Image.open(path).convert("RGB")
250
+ bgr = _to_bgr(pil)
251
+ hits = _decode_any(bgr)
252
+ for h in hits:
253
+ h.update({"source": "image", "page": 0})
254
+ return _dedupe(hits)
255
+
256
+
257
+ def _decode_pdf_path(path: str, max_pages: int = 8, raster_dpis: Tuple[int, ...] = (400, 600, 900)) -> List[Dict[str, Any]]:
258
+ results: List[Dict[str, Any]] = []
259
+ # 1) Try original embedded images first
260
+ for pno, img_bgr in _pdf_extract_xobject_images(path):
261
+ hits = _decode_any(img_bgr)
262
+ for h in hits:
263
+ h.update({"source": "pdf_xobject_image", "page": pno})
264
+ results.extend(hits)
265
+ if results:
266
+ return _dedupe(results)
267
+
268
+ # 2) Fallback: rasterize pages at increasing DPIs
269
+ if not HAS_PYMUPDF:
270
+ # No way to rasterize; return empty
271
+ return []
272
+ doc = fitz.open(path)
273
+ n = min(len(doc), max_pages)
274
+ doc.close()
275
+ for dpi in raster_dpis:
276
+ for pno in range(n):
277
+ img_bgr = _pdf_render_page(path, pno, dpi=dpi)
278
+ hits = _decode_any(img_bgr)
279
+ for h in hits:
280
+ h.update({"source": f"pdf_raster_{dpi}dpi", "page": pno})
281
+ results.extend(hits)
282
+ if results:
283
+ break
284
+ return _dedupe(results)
285
+
286
+
287
+ # =========================
288
+ # Public API
289
+ # =========================
290
+
291
+ def read_barcodes_from_path(path: str,
292
+ max_pages: int = 8,
293
+ raster_dpis: Tuple[int, ...] = (400, 600, 900)) -> List[Dict[str, Any]]:
294
+ """
295
+ Auto-detect by extension, decode barcodes, and return a list of dicts:
296
+ {engine, source, page, type, text, polygon}
297
+ """
298
+ ext = os.path.splitext(path.lower())[1]
299
+ if ext == ".pdf":
300
+ return _decode_pdf_path(path, max_pages=max_pages, raster_dpis=raster_dpis)
301
+ else:
302
+ return _decode_image_path(path)
303
+
304
+
305
+ # =========================
306
+ # Optional: drawing helper
307
+ # =========================
308
+
309
+ def draw_barcodes(bgr: np.ndarray, detections: List[Dict[str, Any]]) -> np.ndarray:
310
+ out = bgr.copy()
311
+ for d in detections:
312
+ poly = np.array(d["polygon"], dtype=np.int32).reshape(-1, 1, 2)
313
+ cv2.polylines(out, [poly], True, (0, 255, 0), 2)
314
+ txt = f'{d["type"]}: {d["text"]}'
315
+ x, y = poly[0, 0, 0], poly[0, 0, 1]
316
+ cv2.putText(out, txt[:48], (x, max(15, y - 6)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 50, 255), 1, cv2.LINE_AA)
317
+ return out
barcode_utils.py DELETED
@@ -1,169 +0,0 @@
1
- import io
2
- import os
3
- from typing import List, Dict, Any, Tuple, Optional
4
-
5
- import cv2
6
- import numpy as np
7
- from PIL import Image
8
-
9
- # PDF support via PyMuPDF (preferred for extracting original image XObjects)
10
- try:
11
- import fitz # PyMuPDF
12
- HAS_PYMUPDF = True
13
- except Exception:
14
- fitz = None
15
- HAS_PYMUPDF = False
16
-
17
-
18
- def _ensure_contrib():
19
- if not hasattr(cv2, "barcode") or not hasattr(cv2.barcode, "BarcodeDetector"):
20
- raise RuntimeError(
21
- "OpenCV was built without the 'barcode' module. "
22
- "Install 'opencv-contrib-python-headless' (not 'opencv-python-headless')."
23
- )
24
-
25
- def _pil_to_bgr(pil: Image.Image) -> np.ndarray:
26
- arr = np.array(pil.convert("RGB"))
27
- return cv2.cvtColor(arr, cv2.COLOR_RGB2BGR)
28
-
29
- def _decode_with_opencv(img_bgr: np.ndarray) -> List[Dict[str, Any]]:
30
- _ensure_contrib()
31
- det = cv2.barcode.BarcodeDetector()
32
-
33
- # Try 4 orientations
34
- results: List[Dict[str, Any]] = []
35
- for k, rot in enumerate([0, 1, 2, 3]): # 0, 90, 180, 270
36
- if rot > 0:
37
- img = np.ascontiguousarray(np.rot90(img_bgr, k=rot))
38
- else:
39
- img = img_bgr
40
-
41
- # Optional light preproc to help 1D codes
42
- gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
43
- gray = cv2.bilateralFilter(gray, d=5, sigmaColor=50, sigmaSpace=50)
44
-
45
- ok, decoded_info, decoded_type, corners = det.detectAndDecode(gray)
46
- if not ok:
47
- continue
48
-
49
- # corners: list of Nx4x2
50
- for txt, typ, pts in zip(decoded_info, decoded_type, corners):
51
- if not txt:
52
- continue
53
- pts = np.asarray(pts, dtype=np.float32)
54
- # rotate points back to original orientation
55
- if rot > 0:
56
- h, w = img_bgr.shape[:2]
57
- if rot == 1: # 90
58
- pts = np.stack([h - pts[:,1], pts[:,0]], axis=1)
59
- elif rot == 2: # 180
60
- pts = np.stack([w - pts[:,0], h - pts[:,1]], axis=1)
61
- elif rot == 3: # 270
62
- pts = np.stack([pts[:,1], w - pts[:,0]], axis=1)
63
-
64
- results.append({
65
- "text": txt,
66
- "type": typ,
67
- "polygon": pts.tolist(), # four points
68
- "rotation_quarters": rot
69
- })
70
- return results
71
-
72
- def _extract_pdf_images_bgr(path: str, page_index: Optional[int] = None) -> List[Tuple[int, np.ndarray]]:
73
- """
74
- Returns list of (page_idx, img_bgr) extracted at native resolution from image XObjects.
75
- """
76
- if not HAS_PYMUPDF:
77
- return []
78
- out: List[Tuple[int, np.ndarray]] = []
79
- doc = fitz.open(path)
80
- pages = range(len(doc)) if page_index is None else [page_index]
81
- for pno in pages:
82
- page = doc[pno]
83
- for imginfo in page.get_images(full=True):
84
- xref = imginfo[0]
85
- pix = fitz.Pixmap(doc, xref)
86
- # Convert to RGB if needed
87
- if pix.n >= 4: # RGBA or CMYK+alpha
88
- pix = fitz.Pixmap(fitz.csRGB, pix)
89
- pil = Image.open(io.BytesIO(pix.tobytes("png"))).convert("RGB")
90
- out.append((pno, _pil_to_bgr(pil)))
91
- pix = None
92
- doc.close()
93
- return out
94
-
95
- def _render_pdf_page_bgr(path: str, pno: int, dpi: int = 600) -> np.ndarray:
96
- if not HAS_PYMUPDF:
97
- raise RuntimeError("PyMuPDF not available to render PDF pages.")
98
- doc = fitz.open(path)
99
- if pno >= len(doc):
100
- doc.close()
101
- raise ValueError(f"Page {pno} out of range (PDF has {len(doc)} pages).")
102
- page = doc[pno]
103
- scale = dpi / 72.0
104
- mat = fitz.Matrix(scale, scale)
105
- pix = page.get_pixmap(matrix=mat, alpha=False)
106
- pil = Image.open(io.BytesIO(pix.tobytes("png"))).convert("RGB")
107
- doc.close()
108
- return _pil_to_bgr(pil)
109
-
110
- def read_barcodes_from_path(path: str, max_pages: int = 5, raster_dpi: int = 900) -> List[Dict[str, Any]]:
111
- """
112
- Unified entry point:
113
- - For images: decode directly with OpenCV.
114
- - For PDFs: try original image XObjects first (raw), then rasterize pages at high DPI as fallback.
115
- Returns a list of dicts: {source, page, type, text, polygon}
116
- """
117
- ext = os.path.splitext(path.lower())[1]
118
- results: List[Dict[str, Any]] = []
119
-
120
- if ext == ".pdf":
121
- # 1) Try native images embedded in the PDF
122
- for pno, img in _extract_pdf_images_bgr(path):
123
- hits = _decode_with_opencv(img)
124
- for h in hits:
125
- results.append({
126
- "source": "pdf_xobject_image",
127
- "page": pno,
128
- **h
129
- })
130
- if results:
131
- return results
132
-
133
- # 2) Fallback: rasterize a few pages crisply and decode
134
- if not HAS_PYMUPDF:
135
- raise RuntimeError("No PyMuPDF; cannot rasterize PDF pages. Add 'pymupdf' to requirements.")
136
- doc = fitz.open(path)
137
- for pno in range(min(len(doc), max_pages)):
138
- page_img = _render_pdf_page_bgr(path, pno, dpi=raster_dpi)
139
- hits = _decode_with_opencv(page_img)
140
- for h in hits:
141
- results.append({
142
- "source": "pdf_rasterized",
143
- "page": pno,
144
- **h
145
- })
146
- doc.close()
147
- return results
148
-
149
- else:
150
- # Image path
151
- pil = Image.open(path).convert("RGB")
152
- img = _pil_to_bgr(pil)
153
- hits = _decode_with_opencv(img)
154
- for h in hits:
155
- results.append({
156
- "source": "image",
157
- "page": 0,
158
- **h
159
- })
160
- return results
161
-
162
- def draw_polys(bgr: np.ndarray, polys: list) -> np.ndarray:
163
- """Draw polygons on the image for visualization"""
164
- out = bgr.copy()
165
- for p in polys:
166
- if "polygon" in p:
167
- pts = np.array(p["polygon"], dtype=np.int32).reshape(-1,1,2)
168
- cv2.polylines(out, [pts], True, (0, 255, 0), 2)
169
- return out
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
requirements.txt CHANGED
@@ -1,9 +1,10 @@
1
- opencv-contrib-python-headless==4.10.0.84
2
  numpy
3
  pillow
 
 
 
4
  pdf2image
5
  gradio
6
- PyMuPDF>=1.24
7
  pytesseract
8
  pyspellchecker
9
  regex
 
 
1
  numpy
2
  pillow
3
+ pymupdf
4
+ opencv-contrib-python-headless==4.10.0.84
5
+ zxing-cpp>=2.2.0
6
  pdf2image
7
  gradio
 
8
  pytesseract
9
  pyspellchecker
10
  regex