Spaces:
Runtime error
Runtime error
import gradio as gr | |
import librosa | |
import soundfile as sf | |
import torch | |
import warnings | |
import os | |
from transformers import Wav2Vec2ProcessorWithLM, Wav2Vec2CTCTokenizer, Wav2Vec2Model | |
warnings.filterwarnings("ignore") | |
from speechbrain.pretrained import EncoderDecoderASR | |
asr_model = EncoderDecoderASR.from_hparams(source="speechbrain/asr-wav2vec2-commonvoice-rw", savedir="pretrained_models/asr-wav2vec2-commonvoice-rw") | |
#asr_model.transcribe_file("speechbrain/asr-wav2vec2-commonvoice-rw/example.mp3") | |
# define speech-to-text function | |
def asr_transcript(audio): | |
if audio == None: | |
return "Please provide audio by uploading a file or by recording audio using microphone by pressing Record (And allow usage of microphone)", "Please provide audio by uploading a file or by recording audio using microphone by pressing Record (And allow usage of microphone)" | |
text = "" | |
if audio: | |
text = asr_model.transcribe_file(audio.name) | |
return text | |
else: | |
return "File not valid" | |
gradio_ui = gr.Interface( | |
fn=asr_transcript, | |
title="Kinyarwanda Speech Recognition", | |
description="Upload an audio clip or record from browser using microphone, and let AI do the hard work of transcribing.", | |
article = """ | |
This demo showcases the pretrained model from deepspeech. | |
""", | |
inputs=[gr.inputs.Audio(source="microphone", type="file", optional=False, label="Record from microphone")], | |
outputs=[gr.outputs.Textbox(label="Recognized speech")], | |
examples = [["sample_1.wav"],["sample_2.wav"]] | |
) | |
gradio_ui.launch(enable_queue=True) |