shikibu9419's picture
Use FastAPI
edace80
raw
history blame
3.81 kB
# from flask import Flask, request, jsonify, render_template, make_response
# from flask_cors import CORS
from fastapi import FastAPI
import numpy as np
import cv2
from src.color_controls import control_kelvin, control_contrast, control_HSV
from src.cyano import Cyanotype
from src.prediction import predict_img, optimize_img, update_patch
from src.utils import cv_to_pil, pil_to_cv
app = FastAPI()
# UPLOAD_FOLDER = './uploads'
# app = Flask(__name__, template_folder='/client', static_folder='/client')
#
# app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
#
# CORS(
# app,
# supports_credentials=True
# )
@app.get("/")
def read_root():
return {"Hello": "World!"}
# @app.route('/api/process', methods=['POST'])
# def process():
# imgfile = request.files['img']
# img_array = np.asarray(bytearray(imgfile.stream.read()), dtype=np.uint8)
# img = cv2.imdecode(img_array, cv2.IMREAD_COLOR)
#
# data = request.form
# hue = int(data["hue"])
# saturation = float(data["saturation"])
# lightness = float(data["lightness"])
# contrast = int(data["contrast"])
# kelvin = int(data["kelvin"])
#
# img = control_contrast(img, contrast)
# img = control_HSV(img, hue, saturation, lightness)
#
# img_pil = cv_to_pil(img)
# img_pil = control_kelvin(img_pil, kelvin)
# img = pil_to_cv(img_pil)
#
# response = make_response(cv2.imencode('.png', img)[1].tobytes())
# response.headers.set('Content-Type', 'image/png')
#
# return response
#
#
# @app.route('/api/predict/<process_name>', methods=['POST'])
# def predict(process_name):
# if not process_name in ['cyanotype_mono', 'cyanotype_full', 'salt', 'platinum']:
# return jsonify({ 'error': 'process name is invalid' })
#
# imgfile = request.files['img']
# img_array = np.asarray(bytearray(imgfile.stream.read()), dtype=np.uint8)
# img = cv2.imdecode(img_array, cv2.IMREAD_COLOR)
#
# # if 'colorpatch' in request.files:
# # patchfile = request.files['colorpatch']
# # patch_array = np.asarray(bytearray(patchfile.stream.read()), dtype=np.uint8)
# # colorpatch = cv2.imdecode(colorpatch_array, cv2.IMREAD_COLOR)
# # update_patch(process_name, colorpatch)
#
# img = predict_img(process_name, img)
#
# response = make_response(cv2.imencode('.png', img)[1].tobytes())
# response.headers.set('Content-Type', 'image/png')
#
# return response
#
#
# @app.route('/api/optimize/<process_name>', methods=['POST'])
# def optimize(process_name):
# if not process_name in ['cyanotype_mono', 'cyanotype_full', 'salt', 'platinum']:
# return jsonify({ 'error': 'process name is invalid' })
#
# imgfile = request.files['img']
# img_array = np.asarray(bytearray(imgfile.stream.read()), dtype=np.uint8)
# img = cv2.imdecode(img_array, cv2.IMREAD_COLOR)
#
# # if 'colorpatch' in request.files:
# # patchfile = request.files['colorpatch']
# # patch_array = np.asarray(bytearray(patchfile.stream.read()), dtype=np.uint8)
# # colorpatch = cv2.imdecode(colorpatch_array, cv2.IMREAD_COLOR)
# # update_patch(process_name, colorpatch)
#
# (opt_img, preview_img) = optimize_img(process_name, img)
#
# h, w = preview_img.shape[:2]
# if process_name.endswith('full'):
# opt_img = np.reshape(opt_img, (h, w, 3))
# else:
# opt_img = np.reshape(opt_img, (h, w, 1))
# opt_img = np.array([[[i[0]] * 3 for i in j] for j in opt_img], dtype=np.uint8)
#
# img = cv2.hconcat([opt_img, preview_img])
# response = make_response(cv2.imencode('.png', img)[1].tobytes())
# response.headers.set('Content-Type', 'image/png')
#
# return response
#
#
# if __name__ == "__main__":
# app.run(debug=True, host="0.0.0.0", port=8000)