DhrubaAdhikary1991's picture
upload
5fd41d5 verified
import cv2
import numpy as np
from sahi.utils.cv import read_image_as_pil,get_bool_mask_from_coco_segmentation
from sahi.prediction import ObjectPrediction, PredictionScore,visualize_object_predictions
from PIL import Image
def custom_render_result(model,image, result,rect_th=2,text_th=2):
if model.overrides["task"] not in ["detect", "segment"]:
raise ValueError(
f"Model task must be either 'detect' or 'segment'. Got {model.overrides['task']}"
)
image = read_image_as_pil(image)
np_image = np.ascontiguousarray(image)
names = model.model.names
masks = result.masks
boxes = result.boxes
object_predictions = []
if boxes is not None:
det_ind = 0
for xyxy, conf, cls in zip(boxes.xyxy, boxes.conf, boxes.cls):
if masks:
img_height = np_image.shape[0]
img_width = np_image.shape[1]
segments = masks.segments
segments = segments[det_ind] # segments: np.array([[x1, y1], [x2, y2]])
# convert segments into full shape
segments[:, 0] = segments[:, 0] * img_width
segments[:, 1] = segments[:, 1] * img_height
segmentation = [segments.ravel().tolist()]
bool_mask = get_bool_mask_from_coco_segmentation(
segmentation, width=img_width, height=img_height
)
if sum(sum(bool_mask == 1)) <= 2:
continue
object_prediction = ObjectPrediction.from_coco_segmentation(
segmentation=segmentation,
category_name=names[int(cls)],
category_id=int(cls),
full_shape=[img_height, img_width],
)
object_prediction.score = PredictionScore(value=conf)
else:
object_prediction = ObjectPrediction(
bbox=xyxy.tolist(),
category_name=names[int(cls)],
category_id=int(cls),
score=conf,
)
object_predictions.append(object_prediction)
det_ind += 1
result = visualize_object_predictions(
image=np_image,
object_prediction_list=object_predictions,
rect_th=rect_th,
text_th=text_th,
)
return Image.fromarray(result["image"])