Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,465 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from streamlit_option_menu import option_menu
|
| 3 |
+
import cv2
|
| 4 |
+
import numpy as np
|
| 5 |
+
import tempfile
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import time
|
| 8 |
+
import av
|
| 9 |
+
from streamlit_webrtc import webrtc_streamer, VideoProcessorBase, RTCConfiguration
|
| 10 |
+
import os
|
| 11 |
+
import requests
|
| 12 |
+
|
| 13 |
+
# Set page config
|
| 14 |
+
st.set_page_config(
|
| 15 |
+
page_title="Real-Time Object Detection & Tracking",
|
| 16 |
+
page_icon="🚗",
|
| 17 |
+
layout="wide",
|
| 18 |
+
initial_sidebar_state="expanded"
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
# Custom CSS for styling
|
| 22 |
+
st.markdown("""
|
| 23 |
+
<style>
|
| 24 |
+
.stApp {
|
| 25 |
+
background-color: #f8f9fa;
|
| 26 |
+
}
|
| 27 |
+
.header {
|
| 28 |
+
color: #2c3e50;
|
| 29 |
+
font-size: 2.5rem;
|
| 30 |
+
font-weight: bold;
|
| 31 |
+
margin-bottom: 1rem;
|
| 32 |
+
}
|
| 33 |
+
.subheader {
|
| 34 |
+
color: #3498db;
|
| 35 |
+
font-size: 1.5rem;
|
| 36 |
+
margin-bottom: 1rem;
|
| 37 |
+
}
|
| 38 |
+
.stButton>button {
|
| 39 |
+
background-color: #3498db;
|
| 40 |
+
color: white;
|
| 41 |
+
border-radius: 5px;
|
| 42 |
+
padding: 0.5rem 1rem;
|
| 43 |
+
border: none;
|
| 44 |
+
transition: all 0.3s;
|
| 45 |
+
}
|
| 46 |
+
.stButton>button:hover {
|
| 47 |
+
background-color: #2980b9;
|
| 48 |
+
transform: translateY(-2px);
|
| 49 |
+
box-shadow: 0 4px 8px rgba(0,0,0,0.1);
|
| 50 |
+
}
|
| 51 |
+
.css-1aumxhk {
|
| 52 |
+
background-color: #ffffff;
|
| 53 |
+
border-radius: 10px;
|
| 54 |
+
padding: 2rem;
|
| 55 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
| 56 |
+
}
|
| 57 |
+
.model-card {
|
| 58 |
+
border-radius: 10px;
|
| 59 |
+
padding: 1.5rem;
|
| 60 |
+
margin-bottom: 1rem;
|
| 61 |
+
background-color: #ffffff;
|
| 62 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
| 63 |
+
transition: all 0.3s;
|
| 64 |
+
}
|
| 65 |
+
.model-card:hover {
|
| 66 |
+
transform: translateY(-5px);
|
| 67 |
+
box-shadow: 0 8px 15px rgba(0, 0, 0, 0.1);
|
| 68 |
+
}
|
| 69 |
+
.stSelectbox>div>div>select {
|
| 70 |
+
border-radius: 5px;
|
| 71 |
+
padding: 0.5rem;
|
| 72 |
+
}
|
| 73 |
+
.stSlider>div>div>div>div {
|
| 74 |
+
background-color: #3498db;
|
| 75 |
+
}
|
| 76 |
+
</style>
|
| 77 |
+
""", unsafe_allow_html=True)
|
| 78 |
+
|
| 79 |
+
# App header
|
| 80 |
+
col1, col2 = st.columns([1, 3])
|
| 81 |
+
with col1:
|
| 82 |
+
st.image("https://huggingface.co/front/assets/huggingface_logo-noborder.svg", width=100)
|
| 83 |
+
with col2:
|
| 84 |
+
st.markdown('<div class="header">Real-Time Object Detection & Tracking</div>', unsafe_allow_html=True)
|
| 85 |
+
st.markdown("Advanced computer vision for autonomous vehicles and surveillance systems")
|
| 86 |
+
|
| 87 |
+
# Navigation menu
|
| 88 |
+
with st.sidebar:
|
| 89 |
+
selected = option_menu(
|
| 90 |
+
menu_title="Main Menu",
|
| 91 |
+
options=["Home", "Live Detection", "Video Processing", "Model Zoo", "Settings", "About"],
|
| 92 |
+
icons=["house", "camera-video", "film", "boxes", "gear", "info-circle"],
|
| 93 |
+
menu_icon="cast",
|
| 94 |
+
default_index=0,
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
# Object detection class (simplified for demo)
|
| 98 |
+
class ObjectDetector:
|
| 99 |
+
def __init__(self, model_type="yolov5"):
|
| 100 |
+
self.model_type = model_type
|
| 101 |
+
self.classes = ["person", "car", "truck", "bicycle", "motorcycle", "bus"]
|
| 102 |
+
self.colors = np.random.uniform(0, 255, size=(len(self.classes), 3))
|
| 103 |
+
|
| 104 |
+
def detect(self, image):
|
| 105 |
+
# In a real app, you would use an actual model here
|
| 106 |
+
# This is a simplified version for demonstration
|
| 107 |
+
|
| 108 |
+
# Convert image to numpy array
|
| 109 |
+
frame = np.array(image)
|
| 110 |
+
|
| 111 |
+
# Simulate detection by adding random bounding boxes
|
| 112 |
+
height, width = frame.shape[:2]
|
| 113 |
+
detections = []
|
| 114 |
+
|
| 115 |
+
for _ in range(np.random.randint(2, 6)):
|
| 116 |
+
class_id = np.random.randint(0, len(self.classes))
|
| 117 |
+
confidence = np.random.uniform(0.7, 0.95)
|
| 118 |
+
|
| 119 |
+
x = int(np.random.uniform(0, width * 0.8))
|
| 120 |
+
y = int(np.random.uniform(0, height * 0.8))
|
| 121 |
+
w = int(np.random.uniform(width * 0.1, width * 0.3))
|
| 122 |
+
h = int(np.random.uniform(height * 0.1, height * 0.3))
|
| 123 |
+
|
| 124 |
+
detections.append({
|
| 125 |
+
"class_id": class_id,
|
| 126 |
+
"confidence": confidence,
|
| 127 |
+
"box": [x, y, x+w, y+h]
|
| 128 |
+
})
|
| 129 |
+
|
| 130 |
+
return detections
|
| 131 |
+
|
| 132 |
+
def draw_detections(self, frame, detections):
|
| 133 |
+
for detection in detections:
|
| 134 |
+
class_id = detection["class_id"]
|
| 135 |
+
confidence = detection["confidence"]
|
| 136 |
+
box = detection["box"]
|
| 137 |
+
|
| 138 |
+
color = self.colors[class_id]
|
| 139 |
+
label = f"{self.classes[class_id]}: {confidence:.2f}"
|
| 140 |
+
|
| 141 |
+
cv2.rectangle(frame, (box[0], box[1]), (box[2], box[3]), color, 2)
|
| 142 |
+
cv2.putText(frame, label, (box[0], box[1]-10),
|
| 143 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
| 144 |
+
|
| 145 |
+
return frame
|
| 146 |
+
|
| 147 |
+
# Video processor for WebRTC
|
| 148 |
+
class VideoProcessor(VideoProcessorBase):
|
| 149 |
+
def __init__(self):
|
| 150 |
+
self.detector = ObjectDetector()
|
| 151 |
+
self.confidence_threshold = 0.5
|
| 152 |
+
self.tracking_enabled = True
|
| 153 |
+
|
| 154 |
+
def recv(self, frame):
|
| 155 |
+
img = frame.to_ndarray(format="bgr24")
|
| 156 |
+
|
| 157 |
+
# Perform detection
|
| 158 |
+
detections = self.detector.detect(img)
|
| 159 |
+
|
| 160 |
+
# Filter by confidence
|
| 161 |
+
detections = [d for d in detections if d["confidence"] >= self.confidence_threshold]
|
| 162 |
+
|
| 163 |
+
# Draw detections
|
| 164 |
+
img = self.detector.draw_detections(img, detections)
|
| 165 |
+
|
| 166 |
+
return av.VideoFrame.from_ndarray(img, format="bgr24")
|
| 167 |
+
|
| 168 |
+
# Home Page
|
| 169 |
+
if selected == "Home":
|
| 170 |
+
st.markdown('<div class="subheader">Welcome to Real-Time Object Detection</div>', unsafe_allow_html=True)
|
| 171 |
+
|
| 172 |
+
col1, col2 = st.columns(2)
|
| 173 |
+
with col1:
|
| 174 |
+
st.markdown("""
|
| 175 |
+
**Advanced computer vision system** for:
|
| 176 |
+
- Autonomous vehicles 🚗
|
| 177 |
+
- Surveillance systems 🏢
|
| 178 |
+
- Traffic monitoring 🚦
|
| 179 |
+
- Smart cities 🌆
|
| 180 |
+
|
| 181 |
+
**Features:**
|
| 182 |
+
- Real-time object detection
|
| 183 |
+
- Multi-object tracking
|
| 184 |
+
- Customizable models
|
| 185 |
+
- High-performance inference
|
| 186 |
+
""")
|
| 187 |
+
|
| 188 |
+
st.button("Get Started →", key="home_get_started")
|
| 189 |
+
|
| 190 |
+
with col2:
|
| 191 |
+
st.image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers-task-cv-object-detection.png",
|
| 192 |
+
caption="Object Detection Example", use_column_width=True)
|
| 193 |
+
|
| 194 |
+
st.markdown("---")
|
| 195 |
+
st.markdown("### How It Works")
|
| 196 |
+
st.markdown("""
|
| 197 |
+
1. **Select a model** from our Model Zoo or upload your own
|
| 198 |
+
2. **Choose input source** - live camera, video file, or image
|
| 199 |
+
3. **Configure settings** - confidence threshold, tracking options
|
| 200 |
+
4. **Run detection** and view real-time results
|
| 201 |
+
""")
|
| 202 |
+
|
| 203 |
+
# Live Detection Page
|
| 204 |
+
elif selected == "Live Detection":
|
| 205 |
+
st.markdown('<div class="subheader">Live Object Detection</div>', unsafe_allow_html=True)
|
| 206 |
+
|
| 207 |
+
tab1, tab2 = st.tabs(["Webcam", "RTSP Stream"])
|
| 208 |
+
|
| 209 |
+
with tab1:
|
| 210 |
+
st.markdown("### Webcam Detection")
|
| 211 |
+
st.info("This will use your device's camera for real-time object detection")
|
| 212 |
+
|
| 213 |
+
# WebRTC configuration
|
| 214 |
+
RTC_CONFIGURATION = RTCConfiguration(
|
| 215 |
+
{"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]}
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
# Confidence threshold
|
| 219 |
+
confidence_threshold = st.slider(
|
| 220 |
+
"Confidence Threshold",
|
| 221 |
+
min_value=0.1,
|
| 222 |
+
max_value=0.9,
|
| 223 |
+
value=0.5,
|
| 224 |
+
step=0.05,
|
| 225 |
+
help="Adjust the minimum confidence score for detections"
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
# Toggle tracking
|
| 229 |
+
tracking_enabled = st.checkbox(
|
| 230 |
+
"Enable Object Tracking",
|
| 231 |
+
value=True,
|
| 232 |
+
help="Track objects across frames for consistent identification"
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
# Start WebRTC streamer
|
| 236 |
+
webrtc_ctx = webrtc_streamer(
|
| 237 |
+
key="object-detection",
|
| 238 |
+
video_processor_factory=VideoProcessor,
|
| 239 |
+
rtc_configuration=RTC_CONFIGURATION,
|
| 240 |
+
media_stream_constraints={"video": True, "audio": False},
|
| 241 |
+
async_processing=True,
|
| 242 |
+
)
|
| 243 |
+
|
| 244 |
+
if webrtc_ctx.video_processor:
|
| 245 |
+
webrtc_ctx.video_processor.confidence_threshold = confidence_threshold
|
| 246 |
+
webrtc_ctx.video_processor.tracking_enabled = tracking_enabled
|
| 247 |
+
|
| 248 |
+
with tab2:
|
| 249 |
+
st.markdown("### RTSP Stream Detection")
|
| 250 |
+
st.warning("This feature requires an RTSP stream URL (e.g., from an IP camera)")
|
| 251 |
+
|
| 252 |
+
rtsp_url = st.text_input("Enter RTSP Stream URL", "rtsp://example.com/stream")
|
| 253 |
+
|
| 254 |
+
if st.button("Connect to Stream"):
|
| 255 |
+
st.warning("RTSP stream processing would be implemented here in a production app")
|
| 256 |
+
st.info(f"Would connect to: {rtsp_url}")
|
| 257 |
+
|
| 258 |
+
# Video Processing Page
|
| 259 |
+
elif selected == "Video Processing":
|
| 260 |
+
st.markdown('<div class="subheader">Video File Processing</div>', unsafe_allow_html=True)
|
| 261 |
+
|
| 262 |
+
uploaded_file = st.file_uploader(
|
| 263 |
+
"Upload a video file",
|
| 264 |
+
type=["mp4", "avi", "mov"],
|
| 265 |
+
help="Upload a video file for object detection processing"
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
if uploaded_file is not None:
|
| 269 |
+
st.success("Video file uploaded successfully!")
|
| 270 |
+
|
| 271 |
+
# Save uploaded file to temporary location
|
| 272 |
+
tfile = tempfile.NamedTemporaryFile(delete=False)
|
| 273 |
+
tfile.write(uploaded_file.read())
|
| 274 |
+
|
| 275 |
+
# Display video info
|
| 276 |
+
video = cv2.VideoCapture(tfile.name)
|
| 277 |
+
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 278 |
+
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 279 |
+
fps = video.get(cv2.CAP_PROP_FPS)
|
| 280 |
+
frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 281 |
+
duration = frame_count / fps
|
| 282 |
+
|
| 283 |
+
col1, col2, col3 = st.columns(3)
|
| 284 |
+
col1.metric("Resolution", f"{width}x{height}")
|
| 285 |
+
col2.metric("FPS", f"{fps:.2f}")
|
| 286 |
+
col3.metric("Duration", f"{duration:.2f} seconds")
|
| 287 |
+
|
| 288 |
+
# Processing options
|
| 289 |
+
st.markdown("### Processing Options")
|
| 290 |
+
confidence_threshold = st.slider(
|
| 291 |
+
"Confidence Threshold",
|
| 292 |
+
min_value=0.1,
|
| 293 |
+
max_value=0.9,
|
| 294 |
+
value=0.5,
|
| 295 |
+
step=0.05
|
| 296 |
+
)
|
| 297 |
+
|
| 298 |
+
tracking_enabled = st.checkbox("Enable Object Tracking", value=True)
|
| 299 |
+
show_fps = st.checkbox("Show FPS Counter", value=True)
|
| 300 |
+
|
| 301 |
+
# Process video button
|
| 302 |
+
if st.button("Process Video"):
|
| 303 |
+
st.warning("Video processing would be implemented here in a production app")
|
| 304 |
+
|
| 305 |
+
# Simulate processing with progress bar
|
| 306 |
+
progress_bar = st.progress(0)
|
| 307 |
+
status_text = st.empty()
|
| 308 |
+
|
| 309 |
+
for i in range(1, 101):
|
| 310 |
+
progress_bar.progress(i)
|
| 311 |
+
status_text.text(f"Processing: {i}% complete")
|
| 312 |
+
time.sleep(0.05)
|
| 313 |
+
|
| 314 |
+
st.success("Video processing completed!")
|
| 315 |
+
st.balloons()
|
| 316 |
+
|
| 317 |
+
# Model Zoo Page
|
| 318 |
+
elif selected == "Model Zoo":
|
| 319 |
+
st.markdown('<div class="subheader">Model Selection</div>', unsafe_allow_html=True)
|
| 320 |
+
|
| 321 |
+
st.markdown("""
|
| 322 |
+
Choose from our pre-trained models or upload your own custom model.
|
| 323 |
+
Different models offer different trade-offs between speed and accuracy.
|
| 324 |
+
""")
|
| 325 |
+
|
| 326 |
+
# Model cards
|
| 327 |
+
col1, col2, col3 = st.columns(3)
|
| 328 |
+
|
| 329 |
+
with col1:
|
| 330 |
+
st.markdown("""
|
| 331 |
+
<div class="model-card">
|
| 332 |
+
<h3>YOLOv5s</h3>
|
| 333 |
+
<p><b>Type:</b> Object Detection</p>
|
| 334 |
+
<p><b>Speed:</b> ⚡⚡⚡⚡⚡</p>
|
| 335 |
+
<p><b>Accuracy:</b> ⭐⭐⭐</p>
|
| 336 |
+
<p>Ultra-fast detection for real-time applications</p>
|
| 337 |
+
</div>
|
| 338 |
+
""", unsafe_allow_html=True)
|
| 339 |
+
if st.button("Select YOLOv5s", key="yolov5s"):
|
| 340 |
+
st.session_state.selected_model = "yolov5s"
|
| 341 |
+
st.success("YOLOv5s selected!")
|
| 342 |
+
|
| 343 |
+
with col2:
|
| 344 |
+
st.markdown("""
|
| 345 |
+
<div class="model-card">
|
| 346 |
+
<h3>Faster R-CNN</h3>
|
| 347 |
+
<p><b>Type:</b> Object Detection</p>
|
| 348 |
+
<p><b>Speed:</b> ⚡⚡</p>
|
| 349 |
+
<p><b>Accuracy:</b> ⭐⭐⭐⭐⭐</p>
|
| 350 |
+
<p>High accuracy for critical applications</p>
|
| 351 |
+
</div>
|
| 352 |
+
""", unsafe_allow_html=True)
|
| 353 |
+
if st.button("Select Faster R-CNN", key="frcnn"):
|
| 354 |
+
st.session_state.selected_model = "faster_rcnn"
|
| 355 |
+
st.success("Faster R-CNN selected!")
|
| 356 |
+
|
| 357 |
+
with col3:
|
| 358 |
+
st.markdown("""
|
| 359 |
+
<div class="model-card">
|
| 360 |
+
<h3>DeepSORT</h3>
|
| 361 |
+
<p><b>Type:</b> Object Tracking</p>
|
| 362 |
+
<p><b>Speed:</b> ⚡⚡⚡</p>
|
| 363 |
+
<p><b>Accuracy:</b> ⭐⭐⭐⭐</p>
|
| 364 |
+
<p>Tracking with deep learning features</p>
|
| 365 |
+
</div>
|
| 366 |
+
""", unsafe_allow_html=True)
|
| 367 |
+
if st.button("Select DeepSORT", key="deepsort"):
|
| 368 |
+
st.session_state.selected_model = "deepsort"
|
| 369 |
+
st.success("DeepSORT selected!")
|
| 370 |
+
|
| 371 |
+
st.markdown("---")
|
| 372 |
+
st.markdown("### Custom Model Upload")
|
| 373 |
+
|
| 374 |
+
custom_model = st.file_uploader(
|
| 375 |
+
"Upload your custom model (PyTorch or TensorFlow)",
|
| 376 |
+
type=["pt", "pth", "h5", "onnx"],
|
| 377 |
+
help="Upload your custom trained model file"
|
| 378 |
+
)
|
| 379 |
+
|
| 380 |
+
if custom_model is not None:
|
| 381 |
+
st.success("Custom model uploaded successfully!")
|
| 382 |
+
st.info("Model would be loaded and validated here in a production app")
|
| 383 |
+
|
| 384 |
+
# Settings Page
|
| 385 |
+
elif selected == "Settings":
|
| 386 |
+
st.markdown('<div class="subheader">Application Settings</div>', unsafe_allow_html=True)
|
| 387 |
+
|
| 388 |
+
st.markdown("### Detection Parameters")
|
| 389 |
+
confidence_threshold = st.slider(
|
| 390 |
+
"Default Confidence Threshold",
|
| 391 |
+
min_value=0.1,
|
| 392 |
+
max_value=0.9,
|
| 393 |
+
value=0.5,
|
| 394 |
+
step=0.05
|
| 395 |
+
)
|
| 396 |
+
|
| 397 |
+
iou_threshold = st.slider(
|
| 398 |
+
"IOU Threshold (for NMS)",
|
| 399 |
+
min_value=0.1,
|
| 400 |
+
max_value=0.9,
|
| 401 |
+
value=0.45,
|
| 402 |
+
step=0.05,
|
| 403 |
+
help="Intersection over Union threshold for non-maximum suppression"
|
| 404 |
+
)
|
| 405 |
+
|
| 406 |
+
st.markdown("### Tracking Parameters")
|
| 407 |
+
max_age = st.slider(
|
| 408 |
+
"Max Track Age (frames)",
|
| 409 |
+
min_value=1,
|
| 410 |
+
max_value=100,
|
| 411 |
+
value=30,
|
| 412 |
+
help="Number of frames to keep a track alive without detection"
|
| 413 |
+
)
|
| 414 |
+
|
| 415 |
+
min_hits = st.slider(
|
| 416 |
+
"Min Detection Hits",
|
| 417 |
+
min_value=1,
|
| 418 |
+
max_value=10,
|
| 419 |
+
value=3,
|
| 420 |
+
help="Number of detections needed before a track is confirmed"
|
| 421 |
+
)
|
| 422 |
+
|
| 423 |
+
if st.button("Save Settings"):
|
| 424 |
+
st.success("Settings saved successfully!")
|
| 425 |
+
|
| 426 |
+
# About Page
|
| 427 |
+
elif selected == "About":
|
| 428 |
+
st.markdown('<div class="subheader">About This Project</div>', unsafe_allow_html=True)
|
| 429 |
+
|
| 430 |
+
st.markdown("""
|
| 431 |
+
**Real-Time Object Detection & Tracking System**
|
| 432 |
+
|
| 433 |
+
This application demonstrates advanced computer vision capabilities for:
|
| 434 |
+
- Autonomous vehicle perception systems
|
| 435 |
+
- Surveillance and security applications
|
| 436 |
+
- Traffic monitoring and analysis
|
| 437 |
+
- Smart city infrastructure
|
| 438 |
+
|
| 439 |
+
**Key Technologies:**
|
| 440 |
+
- Deep learning-based object detection
|
| 441 |
+
- Multi-object tracking algorithms
|
| 442 |
+
- Real-time video processing
|
| 443 |
+
- Edge computing optimization
|
| 444 |
+
|
| 445 |
+
**Underlying Models:**
|
| 446 |
+
- YOLOv5 for fast object detection
|
| 447 |
+
- Faster R-CNN for high accuracy
|
| 448 |
+
- DeepSORT for object tracking
|
| 449 |
+
|
| 450 |
+
Developed with ❤️ using Streamlit and OpenCV.
|
| 451 |
+
""")
|
| 452 |
+
|
| 453 |
+
st.markdown("---")
|
| 454 |
+
st.markdown("""
|
| 455 |
+
**Disclaimer:** This is a demonstration application. For production use,
|
| 456 |
+
please ensure proper testing and validation of all components.
|
| 457 |
+
""")
|
| 458 |
+
|
| 459 |
+
# Footer
|
| 460 |
+
st.markdown("---")
|
| 461 |
+
st.markdown("""
|
| 462 |
+
<div style="text-align: center; color: #7f8c8d; font-size: 0.9rem;">
|
| 463 |
+
Real-Time Object Detection & Tracking | Powered by Streamlit and Hugging Face
|
| 464 |
+
</div>
|
| 465 |
+
""", unsafe_allow_html=True)
|