Dhahlan2000 commited on
Commit
a10faf8
·
1 Parent(s): a889b71

Refactor LLM integration in app.py: replace RunnableSequence with LLMChain and update method call from invoke() to run() for improved functionality and clarity

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -8,7 +8,7 @@ from langchain.schema import AgentAction, AgentFinish, HumanMessage
8
  from langchain.prompts import BaseChatPromptTemplate
9
  from langchain.tools import Tool
10
  from langchain_huggingface import HuggingFacePipeline
11
- from langchain import RunnableSequence
12
  from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
13
  from langchain.memory import ConversationBufferWindowMemory
14
  import torch
@@ -154,8 +154,8 @@ output_parser = CustomOutputParser()
154
  # Initialize HuggingFace pipeline
155
  llm = HuggingFacePipeline(pipeline=pipe)
156
 
157
- # Runnable sequence
158
- llm_chain = RunnableSequence(llm=llm, prompt=prompt_with_history)
159
  tool_names = [tool.name for tool in tools]
160
  agent = LLMSingleActionAgent(
161
  llm_chain=llm_chain,
@@ -178,7 +178,7 @@ if st.button("Submit"):
178
  with st.spinner("Processing..."):
179
  try:
180
  # Run the agent and get the response
181
- response = agent_executor.invoke(query) # Correct method is `invoke`
182
  st.success("Response:")
183
  st.write(response)
184
  except Exception as e:
 
8
  from langchain.prompts import BaseChatPromptTemplate
9
  from langchain.tools import Tool
10
  from langchain_huggingface import HuggingFacePipeline
11
+ from langchain import LLMChain
12
  from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
13
  from langchain.memory import ConversationBufferWindowMemory
14
  import torch
 
154
  # Initialize HuggingFace pipeline
155
  llm = HuggingFacePipeline(pipeline=pipe)
156
 
157
+ # LLM chain
158
+ llm_chain = LLMChain(llm=llm, prompt=prompt_with_history)
159
  tool_names = [tool.name for tool in tools]
160
  agent = LLMSingleActionAgent(
161
  llm_chain=llm_chain,
 
178
  with st.spinner("Processing..."):
179
  try:
180
  # Run the agent and get the response
181
+ response = agent_executor.run(query) # Correct method is `run()`
182
  st.success("Response:")
183
  st.write(response)
184
  except Exception as e: