Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import torch
|
| 4 |
+
import gradio as gr
|
| 5 |
+
|
| 6 |
+
image_processor = AutoImageProcessor.from_pretrained("wesleyacheng/dog-breeds-multiclass-image-classification-with-vit")
|
| 7 |
+
model = AutoModelForImageClassification.from_pretrained("wesleyacheng/dog-breeds-multiclass-image-classification-with-vit")
|
| 8 |
+
|
| 9 |
+
def classify_dog(image):
|
| 10 |
+
inputs = image_processor(images=image, return_tensors="pt")
|
| 11 |
+
with torch.no_grad():
|
| 12 |
+
outputs = model(**inputs)
|
| 13 |
+
logits = outputs.logits
|
| 14 |
+
predicted_class_idx = logits.argmax(-1).item()
|
| 15 |
+
predicted_breed = model.config.id2label[predicted_class_idx]
|
| 16 |
+
return f"Predicted Dog Breed: {predicted_breed}"
|
| 17 |
+
|
| 18 |
+
demo = gr.Interface(
|
| 19 |
+
fn=classify_dog,
|
| 20 |
+
inputs=gr.Image(type="pil"),
|
| 21 |
+
outputs="text",
|
| 22 |
+
title="Dog Breed Classifier",
|
| 23 |
+
description="Upload an image of a dog and the model will classify its breed (120 breeds supported)."
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
demo.launch()
|