Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
image_processor = AutoImageProcessor.from_pretrained("wesleyacheng/dog-breeds-multiclass-image-classification-with-vit")
|
7 |
+
model = AutoModelForImageClassification.from_pretrained("wesleyacheng/dog-breeds-multiclass-image-classification-with-vit")
|
8 |
+
|
9 |
+
def classify_dog(image):
|
10 |
+
inputs = image_processor(images=image, return_tensors="pt")
|
11 |
+
with torch.no_grad():
|
12 |
+
outputs = model(**inputs)
|
13 |
+
logits = outputs.logits
|
14 |
+
predicted_class_idx = logits.argmax(-1).item()
|
15 |
+
predicted_breed = model.config.id2label[predicted_class_idx]
|
16 |
+
return f"Predicted Dog Breed: {predicted_breed}"
|
17 |
+
|
18 |
+
demo = gr.Interface(
|
19 |
+
fn=classify_dog,
|
20 |
+
inputs=gr.Image(type="pil"),
|
21 |
+
outputs="text",
|
22 |
+
title="Dog Breed Classifier",
|
23 |
+
description="Upload an image of a dog and the model will classify its breed (120 breeds supported)."
|
24 |
+
)
|
25 |
+
|
26 |
+
demo.launch()
|