Spaces:
Sleeping
Sleeping
| from transformers import AutoImageProcessor, AutoModelForImageClassification | |
| from PIL import Image | |
| import torch | |
| import gradio as gr | |
| # Load the image processor and model from Hugging Face | |
| processor = AutoImageProcessor.from_pretrained("wesleyacheng/dog-breeds-multiclass-image-classification-with-vit") | |
| breed_model = AutoModelForImageClassification.from_pretrained("wesleyacheng/dog-breeds-multiclass-image-classification-with-vit") | |
| # This function takes an uploaded image and returns the predicted dog breed | |
| def detect_breed(img): | |
| inputs = processor(images=img, return_tensors="pt") | |
| with torch.no_grad(): | |
| result = breed_model(**inputs) | |
| predictions = result.logits | |
| top_prediction = predictions.argmax(dim=1).item() | |
| breed_name = breed_model.config.id2label[top_prediction] | |
| return f"This looks like a {breed_name}!" | |
| # Set up the Gradio web interface | |
| app = gr.Interface( | |
| fn=detect_breed, | |
| inputs=gr.Image(type="pil"), | |
| outputs="text", | |
| title="Dog Breed Identifier ๐ถ", | |
| description="Upload a photo of a dog and find out what breed it is! The model can recognize 120 different dog breeds." | |
| ) | |
| app.launch() | |