Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
from io import StringIO | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
# Predefined example CSV content | |
EXAMPLE_CSV_CONTENT = """ | |
"Loss","Date","Score","Opponent","Record","Attendance" | |
"Hampton (14β12)","September 25","8β7","Padres","67β84","31,193" | |
"Speier (5β3)","September 26","3β1","Padres","67β85","30,711" | |
"Elarton (4β9)","September 22","3β1","@ Expos","65β83","9,707" | |
"Lundquist (0β1)","September 24","15β11","Padres","67β83","30,774" | |
"Hampton (13β11)","September 6","9β5","Dodgers","61β78","31,407" | |
""" | |
# Load the model and tokenizer | |
def load_model_and_tokenizer(): | |
model_name = "tablegpt/TableGPT2-7B" | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, torch_dtype="auto", device_map="auto" | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
return model, tokenizer | |
model, tokenizer = load_model_and_tokenizer() | |
# Application UI | |
st.title("Table Question Answering App") | |
st.write( | |
""" | |
This app uses a language model to answer questions about tabular data. | |
You can upload your own CSV file or use a predefined example to test it. | |
""" | |
) | |
# Sidebar for input options | |
st.sidebar.header("Input Options") | |
data_source = st.sidebar.radio("Choose a data source:", ("Example CSV", "Upload CSV")) | |
if data_source == "Example CSV": | |
st.subheader("Using Example CSV Data") | |
csv_file = StringIO(EXAMPLE_CSV_CONTENT) | |
df = pd.read_csv(csv_file) | |
else: | |
st.subheader("Upload Your CSV File") | |
uploaded_file = st.file_uploader("Upload a CSV file", type=["csv"]) | |
if uploaded_file is not None: | |
df = pd.read_csv(uploaded_file) | |
else: | |
st.warning("Please upload a CSV file to proceed.") | |
st.stop() | |
# Display the loaded dataframe | |
st.write("### Data Preview") | |
st.dataframe(df) | |
# Question Input | |
st.write("### Ask a Question") | |
question = st.text_input("Enter your question:", "εͺδΊζ―θ΅ηζη»©θΎΎε°δΊ40θ40θ΄οΌ") | |
# Generate response if question is provided | |
if question: | |
example_prompt_template = """Given access to several pandas dataframes, write the Python code to answer the user's question. | |
/* | |
"{var_name}.head(5).to_string(index=False)" as follows: | |
{df_info} | |
*/ | |
Question: {user_question} | |
""" | |
prompt = example_prompt_template.format( | |
var_name="df", | |
df_info=df.head(5).to_string(index=False), | |
user_question=question, | |
) | |
messages = [ | |
{"role": "system", "content": "You are a helpful assistant."}, | |
{"role": "user", "content": prompt}, | |
] | |
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) | |
with st.spinner("Generating response..."): | |
generated_ids = model.generate(**model_inputs, max_new_tokens=512) | |
generated_ids = [ | |
output_ids[len(input_ids) :] | |
for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) | |
] | |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
# Display response | |
st.write("### Model Response") | |
st.text_area("Response", response, height=200) | |
# Footer | |
st.sidebar.info( | |
""" | |
This app demonstrates the use of a language model for tabular data understanding. | |
Powered by [Hugging Face Transformers](https://huggingface.co/). | |
""" | |
) | |