|
import gradio as gr |
|
from transformers import AutoModelWithLMHead, AutoTokenizer |
|
model_name = "distilbert-base-uncased" |
|
model = AutoModelWithLMHead.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
def complete_sentence(sentence): |
|
input_ids = tokenizer.encode(sentence, return_tensors="pt") |
|
output = model.generate(input_ids, max_length=50, num_return_sequences=1) |
|
completed_sentence = tokenizer.decode(output[0], skip_special_tokens=True) |
|
return completed_sentence |
|
|
|
iface = gr.Interface(fn=complete_sentence, inputs="text", outputs="text") |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |
|
|
|
|