DexterSptizu commited on
Commit
57f002f
1 Parent(s): a8bb9e9

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +91 -0
app.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import AutoTokenizer, AutoModelForTokenClassification
3
+ import gradio as gr
4
+
5
+ # Load the tokenizer and model
6
+ model_name = "iiiorg/piiranha-v1-detect-personal-information"
7
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
8
+ model = AutoModelForTokenClassification.from_pretrained(model_name)
9
+
10
+ # Set device to GPU if available
11
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
12
+ model.to(device)
13
+
14
+ def apply_redaction(masked_text, start, end, pii_type, aggregate_redaction):
15
+ for j in range(start, end):
16
+ masked_text[j] = ''
17
+ if aggregate_redaction:
18
+ masked_text[start] = '[redacted]'
19
+ else:
20
+ masked_text[start] = f'[{pii_type}]'
21
+
22
+ def mask_pii(text, aggregate_redaction=True):
23
+ # Tokenize input text
24
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
25
+ inputs = {k: v.to(device) for k, v in inputs.items()}
26
+
27
+ # Get the model predictions
28
+ with torch.no_grad():
29
+ outputs = model(**inputs)
30
+
31
+ # Get the predicted labels
32
+ predictions = torch.argmax(outputs.logits, dim=-1)
33
+
34
+ # Convert token predictions to word predictions
35
+ encoded_inputs = tokenizer.encode_plus(text, return_offsets_mapping=True, add_special_tokens=True)
36
+ offset_mapping = encoded_inputs['offset_mapping']
37
+
38
+ masked_text = list(text)
39
+ is_redacting = False
40
+ redaction_start = 0
41
+ current_pii_type = ''
42
+
43
+ for i, (start, end) in enumerate(offset_mapping):
44
+ if start == end: # Special token
45
+ continue
46
+
47
+ label = predictions[0][i].item()
48
+ if label != model.config.label2id['O']: # Non-O label
49
+ pii_type = model.config.id2label[label]
50
+ if not is_redacting:
51
+ is_redacting = True
52
+ redaction_start = start
53
+ current_pii_type = pii_type
54
+ elif not aggregate_redaction and pii_type != current_pii_type:
55
+ # End current redaction and start a new one
56
+ apply_redaction(masked_text, redaction_start, start, current_pii_type, aggregate_redaction)
57
+ redaction_start = start
58
+ current_pii_type = pii_type
59
+ else:
60
+ if is_redacting:
61
+ apply_redaction(masked_text, redaction_start, end, current_pii_type, aggregate_redaction)
62
+ is_redacting = False
63
+
64
+ # Handle case where PII is at the end of the text
65
+ if is_redacting:
66
+ apply_redaction(masked_text, redaction_start, len(masked_text), current_pii_type, aggregate_redaction)
67
+
68
+ return ''.join(masked_text)
69
+
70
+ # Define the function for Gradio interface
71
+ def redact_text(text, aggregate_redaction):
72
+ return mask_pii(text, aggregate_redaction)
73
+
74
+ # Create Gradio Interface
75
+ demo = gr.Interface(
76
+ fn=redact_text,
77
+ inputs=[
78
+ gr.Textbox(lines=5, label="Enter Text with Potential PII"),
79
+ gr.Checkbox(label="Aggregate Redaction", value=True)
80
+ ],
81
+ outputs="text",
82
+ title="PII Detection and Redaction",
83
+ description="This application detects personal identifiable information (PII) and redacts it from the provided text. You can choose to either aggregate all PII redaction into a single '[redacted]' label or keep each PII type labeled individually.",
84
+ examples=[
85
+ ["John Doe's phone number is 123-456-7890, and his email is john.doe@example.com."],
86
+ ["Jane was born on 12th August, 1990 and her SSN is 987-65-4321."]
87
+ ]
88
+ )
89
+
90
+ if __name__ == "__main__":
91
+ demo.launch()