|
import streamlit as st |
|
from PIL import Image |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import os |
|
|
|
def load_model(): |
|
|
|
|
|
pass |
|
|
|
def process_image_text(image, text, language): |
|
|
|
|
|
pass |
|
|
|
def main(): |
|
st.set_page_config(page_title="Maya - Multilingual Vision Language Assistant", layout="wide") |
|
|
|
st.title("π Maya: Multimodal Multilingual Assistant") |
|
st.markdown("Interact with images and text in multiple languages") |
|
|
|
|
|
languages = ["English", "Hindi", "Spanish", "French", "Chinese", "Arabic"] |
|
selected_language = st.sidebar.selectbox("Select Language", languages) |
|
|
|
|
|
col1, col2 = st.columns(2) |
|
|
|
with col1: |
|
st.subheader("Upload Image") |
|
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"]) |
|
|
|
if uploaded_file is not None: |
|
image = Image.open(uploaded_file) |
|
st.image(image, caption="Uploaded Image", use_container_width=True) |
|
|
|
with col2: |
|
st.subheader("Enter Your Query") |
|
user_query = st.text_area("Type your question about the image...") |
|
|
|
if st.button("Process"): |
|
if uploaded_file is None: |
|
st.error("Please upload an image first!") |
|
elif not user_query: |
|
st.error("Please enter a query!") |
|
else: |
|
with st.spinner("Processing..."): |
|
try: |
|
response = process_image_text(image, user_query, selected_language) |
|
st.success("Processing Complete!") |
|
st.markdown("### Response:") |
|
st.write(response) |
|
except Exception as e: |
|
st.error(f"An error occurred: {str(e)}") |
|
|
|
|
|
st.markdown("---") |
|
st.markdown("Powered by Maya: Multimodal Multilingual LLM") |
|
|
|
if __name__ == "__main__": |
|
main() |