devis2 commited on
Commit
12cd3e7
1 Parent(s): 01da2c9

Testing: Add ollama, langchain, and gradio dependencies

Browse files
Files changed (2) hide show
  1. app.py +28 -57
  2. requirements.txt +7 -1
app.py CHANGED
@@ -1,63 +1,34 @@
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
  ],
 
59
  )
60
 
61
 
62
  if __name__ == "__main__":
63
- demo.launch()
 
1
+ import os
2
  import gradio as gr
3
+ import ollama
4
+ import bs4
5
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
6
+ from langchain_community.document_loaders import WebBaseLoader
7
+ from langchain_community.vectorstores import Chroma
8
+ from langchain_community.embeddings import OllamaEmbeddings
9
+ from langchain_core.output_parsers import StrOutputParser
10
+ from langchain_core.runnables import RunnablePassthrough
11
+
12
+ os.system("ollama pull llama3")
13
+ os.system("ollama pull nomic-embed-text")
14
+
15
+
16
+ def main( query , link ):
17
+ return "Hello World"
18
+
19
+
20
+
21
+
22
+ iface = gr.Interface(
23
+ fn=main,
24
+ inputs=
25
+ [
26
+ gr.Textbox(label="Input Query"),
27
+ gr.Textbox(label="Input Link"),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  ],
29
+ outputs=["textbox"]
30
  )
31
 
32
 
33
  if __name__ == "__main__":
34
+ iface.launch()
requirements.txt CHANGED
@@ -1 +1,7 @@
1
- huggingface_hub==0.22.2
 
 
 
 
 
 
 
1
+ huggingface_hub==0.22.2
2
+ ollama
3
+ langchain
4
+ beautifulsoup4
5
+ chromadb
6
+ gradio
7
+ langchain_community