Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,30 +1,26 @@
|
|
|
|
1 |
import torch
|
|
|
|
|
2 |
import gradio as gr
|
|
|
|
|
3 |
from PIL import Image
|
|
|
|
|
4 |
import scipy.io.wavfile as wavfile
|
5 |
|
6 |
# Use a pipeline as a high-level helper
|
7 |
from transformers import pipeline
|
8 |
|
9 |
-
# from phonemizer.backend.espeak.wrapper import EspeakWrapper
|
10 |
-
# _ESPEAK_LIBRARY = '/opt/homebrew/Cellar/espeak/1.48.04_1/lib/libespeak.1.1.48.dylib' #use the Path to the library.
|
11 |
-
# EspeakWrapper.set_library(_ESPEAK_LIBRARY)
|
12 |
|
13 |
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
14 |
|
15 |
narrator = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs")
|
16 |
|
17 |
-
# tts_model_path = "../Models/models--kakao-enterprise--vits-ljs/snapshots/3bcb8321394f671bd948ebf0d086d694dda95464"
|
18 |
-
|
19 |
-
# narrator = pipeline("text-to-speech", model=tts_model_path)
|
20 |
-
|
21 |
# Load the pretrained weights
|
22 |
caption_image = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large", device=device)
|
23 |
|
24 |
-
# model_path = "../Models/models--Salesforce--blip-image-captioning-large/snapshots/2227ac38c9f16105cb0412e7cab4759978a8fd90"
|
25 |
-
|
26 |
-
# Load the pretrained weights
|
27 |
-
# caption_image = pipeline("image-to-text", model=model_path, device=device)
|
28 |
|
29 |
# Define the function to generate audio from text
|
30 |
def generate_audio(text):
|
@@ -36,13 +32,13 @@ def generate_audio(text):
|
|
36 |
data=narrated_text["audio"][0])
|
37 |
|
38 |
# Return the path to the saved output WAV file
|
39 |
-
return "output.wav"
|
40 |
|
41 |
def caption_my_image(pil_image):
|
42 |
|
43 |
semantics = caption_image(images=pil_image)[0]['generated_text']
|
44 |
audio = generate_audio(semantics)
|
45 |
-
return semantics,audio
|
46 |
|
47 |
|
48 |
gr.close_all()
|
|
|
1 |
+
# to create nueral network
|
2 |
import torch
|
3 |
+
|
4 |
+
# for interface
|
5 |
import gradio as gr
|
6 |
+
|
7 |
+
# to open images
|
8 |
from PIL import Image
|
9 |
+
|
10 |
+
# used for audio
|
11 |
import scipy.io.wavfile as wavfile
|
12 |
|
13 |
# Use a pipeline as a high-level helper
|
14 |
from transformers import pipeline
|
15 |
|
|
|
|
|
|
|
16 |
|
17 |
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
18 |
|
19 |
narrator = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs")
|
20 |
|
|
|
|
|
|
|
|
|
21 |
# Load the pretrained weights
|
22 |
caption_image = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large", device=device)
|
23 |
|
|
|
|
|
|
|
|
|
24 |
|
25 |
# Define the function to generate audio from text
|
26 |
def generate_audio(text):
|
|
|
32 |
data=narrated_text["audio"][0])
|
33 |
|
34 |
# Return the path to the saved output WAV file
|
35 |
+
return "output.wav" # return audio
|
36 |
|
37 |
def caption_my_image(pil_image):
|
38 |
|
39 |
semantics = caption_image(images=pil_image)[0]['generated_text']
|
40 |
audio = generate_audio(semantics)
|
41 |
+
return semantics,audio # returns both text and audio output
|
42 |
|
43 |
|
44 |
gr.close_all()
|