|
import gradio as gr |
|
from openai import OpenAI |
|
import os |
|
|
|
""" |
|
Initialize the OpenAI client |
|
""" |
|
client = OpenAI( |
|
api_key="na", |
|
base_url=os.environ['API_BASE'] |
|
) |
|
|
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
""" |
|
Respond to a user message using the OpenAI client with streaming enabled. |
|
""" |
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = "" |
|
|
|
try: |
|
|
|
for message_chunk in client.chat.completions.create( |
|
model="DeepSeek R1 Distill Llama 8B", |
|
messages=messages, |
|
max_tokens=max_tokens, |
|
temperature=temperature, |
|
top_p=top_p, |
|
stream=True, |
|
stop=["<|im_start|>", "<|im_end|>"] |
|
): |
|
|
|
token = message_chunk.choices[0].delta.content |
|
if token: |
|
response += token |
|
yield response |
|
except Exception as e: |
|
yield f"Error: {str(e)}" |
|
|
|
|
|
""" |
|
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface |
|
""" |
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a helpful assistant.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
title="Inference demo on AMD Instinct MI50", |
|
|
|
description="DevQuasar R1 8B Q8 with llama.cpp", |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|