Spaces:
Sleeping
Sleeping
import pandas as pd | |
from sklearn.model_selection import train_test_split | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.linear_model import LogisticRegression | |
from sklearn.metrics import accuracy_score, classification_report | |
import pickle | |
df = pd.read_csv('IMDB Dataset.csv') | |
print(df.head()) | |
df['sentiment'] = df['sentiment'].map({'positive': 1, 'negative': 0}) | |
print(df.isnull()) | |
X = df['review'] | |
y = df['sentiment'] | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) | |
tfidf_vectorizer = TfidfVectorizer() | |
X_train_tfidf = tfidf_vectorizer.fit_transform(X_train) | |
X_test_tfidf = tfidf_vectorizer.transform(X_test) | |
model = LogisticRegression() | |
model.fit(X_train_tfidf, y_train) | |
y_pred = model.predict(X_test_tfidf) | |
print("Accuracy:", accuracy_score(y_test, y_pred)) | |
print(classification_report(y_test, y_pred)) | |
filename = 'linear_regression_model.pkl' | |
with open(filename, 'wb') as model_file: | |
pickle.dump(model, model_file) | |