imdb-reviews / linear_regression.py
DevBM's picture
Upload 6 files
571bf3f verified
raw
history blame
1.07 kB
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report
import pickle
df = pd.read_csv('IMDB Dataset.csv')
print(df.head())
df['sentiment'] = df['sentiment'].map({'positive': 1, 'negative': 0})
print(df.isnull())
X = df['review']
y = df['sentiment']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
tfidf_vectorizer = TfidfVectorizer()
X_train_tfidf = tfidf_vectorizer.fit_transform(X_train)
X_test_tfidf = tfidf_vectorizer.transform(X_test)
model = LogisticRegression()
model.fit(X_train_tfidf, y_train)
y_pred = model.predict(X_test_tfidf)
print("Accuracy:", accuracy_score(y_test, y_pred))
print(classification_report(y_test, y_pred))
filename = 'linear_regression_model.pkl'
with open(filename, 'wb') as model_file:
pickle.dump(model, model_file)