Spaces:
Sleeping
Sleeping
Adding Keyword extract options, additional elements show checkboxes
Browse files
app.py
CHANGED
@@ -17,8 +17,16 @@ from nltk.corpus import wordnet
|
|
17 |
import random
|
18 |
from sense2vec import Sense2Vec
|
19 |
import sense2vec
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
# Load spaCy model
|
21 |
-
nlp = spacy.load("
|
22 |
# s2v = Sense2Vec.from_disk(self=Sense2Vec,path='s2v_old')
|
23 |
|
24 |
s2v = sense2vec.Sense2Vec().from_disk('s2v_old')
|
@@ -34,30 +42,35 @@ def load_model():
|
|
34 |
return model, tokenizer
|
35 |
|
36 |
# Function to extract keywords using combined techniques
|
37 |
-
def extract_keywords(text):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
# Use RAKE
|
39 |
rake = Rake()
|
40 |
rake.extract_keywords_from_text(text)
|
41 |
rake_keywords = set(rake.get_ranked_phrases())
|
42 |
-
|
43 |
# Use spaCy for NER and POS tagging
|
44 |
-
doc = nlp(text)
|
45 |
-
spacy_keywords = set([ent.text for ent in doc.ents])
|
46 |
spacy_keywords.update([token.text for token in doc if token.pos_ in ["NOUN", "PROPN", "VERB", "ADJ"]])
|
47 |
-
|
48 |
# Use TF-IDF
|
49 |
vectorizer = TfidfVectorizer(stop_words='english')
|
50 |
X = vectorizer.fit_transform([text])
|
51 |
tfidf_keywords = set(vectorizer.get_feature_names_out())
|
52 |
-
|
|
|
53 |
# Combine all keywords
|
54 |
combined_keywords = rake_keywords.union(spacy_keywords).union(tfidf_keywords)
|
55 |
|
56 |
return list(combined_keywords)
|
57 |
|
58 |
-
# Load spaCy model (medium-sized model with word vectors)
|
59 |
-
nlp = spacy.load("en_core_web_md")
|
60 |
-
|
61 |
def get_similar_words_sense2vec(word, n=3):
|
62 |
# Try to find the word with its most likely part-of-speech
|
63 |
word_with_pos = word + "|NOUN"
|
@@ -140,7 +153,6 @@ def entity_linking(keyword):
|
|
140 |
return None
|
141 |
|
142 |
# Function to generate questions using beam search
|
143 |
-
@st.cache_data
|
144 |
def generate_question(context, answer, num_beams):
|
145 |
input_text = f"<context> {context} <answer> {answer}"
|
146 |
input_ids = tokenizer.encode(input_text, return_tensors='pt')
|
@@ -169,6 +181,19 @@ def export_to_pdf(data):
|
|
169 |
# pdf.output("questions.pdf")
|
170 |
return pdf.output(name='questions.pdf',dest='S').encode('latin1')
|
171 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
if 'data' not in st.session_state:
|
173 |
st.session_state.data = None
|
174 |
|
@@ -182,14 +207,21 @@ with st.sidebar:
|
|
182 |
num_beams = st.slider("Select number of beams for question generation", min_value=1, max_value=10, value=5)
|
183 |
context_window_size = st.slider("Select context window size (number of sentences before and after)", min_value=1, max_value=5, value=1)
|
184 |
num_questions = st.slider("Select number of questions to generate", min_value=1, max_value=1000, value=5)
|
185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
if st.button("Generate Questions"):
|
187 |
if text:
|
188 |
model, tokenizer = load_model()
|
189 |
-
keywords = extract_keywords(text)
|
|
|
190 |
keyword_sentence_mapping = map_keywords_to_sentences(text, keywords, context_window_size)
|
191 |
|
192 |
-
st.subheader("Generated Questions:")
|
193 |
data = []
|
194 |
for i, (keyword, context) in enumerate(keyword_sentence_mapping.items()):
|
195 |
if i >= num_questions:
|
@@ -197,22 +229,26 @@ if st.button("Generate Questions"):
|
|
197 |
linked_entity = entity_linking(keyword)
|
198 |
question = generate_question(context, keyword, num_beams=num_beams)
|
199 |
options = generate_options(keyword, context)
|
|
|
200 |
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
st.write(f"
|
207 |
-
|
208 |
-
|
209 |
-
|
|
|
|
|
210 |
st.write("---")
|
211 |
data.append((context, keyword, question, options))
|
212 |
|
213 |
# Add the data to session state
|
214 |
st.session_state.data = data
|
215 |
-
|
|
|
216 |
# Export buttons
|
217 |
if st.session_state.data is not None:
|
218 |
with st.sidebar:
|
@@ -227,4 +263,5 @@ if st.button("Generate Questions"):
|
|
227 |
|
228 |
|
229 |
else:
|
230 |
-
st.write("Please enter some text to generate questions.")
|
|
|
|
17 |
import random
|
18 |
from sense2vec import Sense2Vec
|
19 |
import sense2vec
|
20 |
+
from wordcloud import WordCloud
|
21 |
+
import matplotlib.pyplot as plt
|
22 |
+
print("***************************************************************")
|
23 |
+
|
24 |
+
st.set_page_config(
|
25 |
+
page_title="Question Generator",
|
26 |
+
initial_sidebar_state="collapsed",
|
27 |
+
)
|
28 |
# Load spaCy model
|
29 |
+
nlp = spacy.load("en_core_web_md")
|
30 |
# s2v = Sense2Vec.from_disk(self=Sense2Vec,path='s2v_old')
|
31 |
|
32 |
s2v = sense2vec.Sense2Vec().from_disk('s2v_old')
|
|
|
42 |
return model, tokenizer
|
43 |
|
44 |
# Function to extract keywords using combined techniques
|
45 |
+
def extract_keywords(text, extract_all):
|
46 |
+
doc = nlp(text)
|
47 |
+
spacy_keywords = set([ent.text for ent in doc.ents])
|
48 |
+
spacy_entities = spacy_keywords
|
49 |
+
print(f"\n\nSpacy Entities: {spacy_entities} \n\n")
|
50 |
+
|
51 |
+
# Use Only Spacy Entities
|
52 |
+
if extract_all is False:
|
53 |
+
return list(spacy_entities)
|
54 |
+
|
55 |
# Use RAKE
|
56 |
rake = Rake()
|
57 |
rake.extract_keywords_from_text(text)
|
58 |
rake_keywords = set(rake.get_ranked_phrases())
|
59 |
+
print(f"\n\nRake Keywords: {rake_keywords} \n\n")
|
60 |
# Use spaCy for NER and POS tagging
|
|
|
|
|
61 |
spacy_keywords.update([token.text for token in doc if token.pos_ in ["NOUN", "PROPN", "VERB", "ADJ"]])
|
62 |
+
print(f"\n\nSpacy Keywords: {spacy_keywords} \n\n")
|
63 |
# Use TF-IDF
|
64 |
vectorizer = TfidfVectorizer(stop_words='english')
|
65 |
X = vectorizer.fit_transform([text])
|
66 |
tfidf_keywords = set(vectorizer.get_feature_names_out())
|
67 |
+
print(f"\n\nTFIDF Entities: {tfidf_keywords} \n\n")
|
68 |
+
|
69 |
# Combine all keywords
|
70 |
combined_keywords = rake_keywords.union(spacy_keywords).union(tfidf_keywords)
|
71 |
|
72 |
return list(combined_keywords)
|
73 |
|
|
|
|
|
|
|
74 |
def get_similar_words_sense2vec(word, n=3):
|
75 |
# Try to find the word with its most likely part-of-speech
|
76 |
word_with_pos = word + "|NOUN"
|
|
|
153 |
return None
|
154 |
|
155 |
# Function to generate questions using beam search
|
|
|
156 |
def generate_question(context, answer, num_beams):
|
157 |
input_text = f"<context> {context} <answer> {answer}"
|
158 |
input_ids = tokenizer.encode(input_text, return_tensors='pt')
|
|
|
181 |
# pdf.output("questions.pdf")
|
182 |
return pdf.output(name='questions.pdf',dest='S').encode('latin1')
|
183 |
|
184 |
+
def display_word_cloud(generated_questions):
|
185 |
+
word_frequency = {}
|
186 |
+
for question in generated_questions:
|
187 |
+
words = question.split()
|
188 |
+
for word in words:
|
189 |
+
word_frequency[word] = word_frequency.get(word, 0) + 1
|
190 |
+
|
191 |
+
wordcloud = WordCloud(width=800, height=400, background_color='white').generate_from_frequencies(word_frequency)
|
192 |
+
plt.figure(figsize=(10, 5))
|
193 |
+
plt.imshow(wordcloud, interpolation='bilinear')
|
194 |
+
plt.axis('off')
|
195 |
+
st.pyplot()
|
196 |
+
|
197 |
if 'data' not in st.session_state:
|
198 |
st.session_state.data = None
|
199 |
|
|
|
207 |
num_beams = st.slider("Select number of beams for question generation", min_value=1, max_value=10, value=5)
|
208 |
context_window_size = st.slider("Select context window size (number of sentences before and after)", min_value=1, max_value=5, value=1)
|
209 |
num_questions = st.slider("Select number of questions to generate", min_value=1, max_value=1000, value=5)
|
210 |
+
with st.expander("Choose the Additional Elements to show"):
|
211 |
+
show_context = st.checkbox("Context",True)
|
212 |
+
show_answer = st.checkbox("Answer",True)
|
213 |
+
show_options = st.checkbox("Options",False)
|
214 |
+
show_entity_link = st.checkbox("Enitity Link For Wikipedia",True)
|
215 |
+
extract_all_keywords = st.toggle("Extract max Keywords",value=False)
|
216 |
+
|
217 |
if st.button("Generate Questions"):
|
218 |
if text:
|
219 |
model, tokenizer = load_model()
|
220 |
+
keywords = extract_keywords(text,extract_all_keywords)
|
221 |
+
print(f"\n\nFinal Keywords in Main Function: {keywords}\n\n")
|
222 |
keyword_sentence_mapping = map_keywords_to_sentences(text, keywords, context_window_size)
|
223 |
|
224 |
+
st.subheader("Generated Questions:",divider='blue')
|
225 |
data = []
|
226 |
for i, (keyword, context) in enumerate(keyword_sentence_mapping.items()):
|
227 |
if i >= num_questions:
|
|
|
229 |
linked_entity = entity_linking(keyword)
|
230 |
question = generate_question(context, keyword, num_beams=num_beams)
|
231 |
options = generate_options(keyword, context)
|
232 |
+
st.subheader(body=f":orange[Q{i+1}:] {question}")
|
233 |
|
234 |
+
if show_context is True:
|
235 |
+
st.write(f"**Context:** {context}")
|
236 |
+
if show_answer is True:
|
237 |
+
st.write(f"**Answer:** {keyword}")
|
238 |
+
if show_options is True:
|
239 |
+
st.write(f"**Options:**")
|
240 |
+
for j, option in enumerate(options):
|
241 |
+
st.write(f"{chr(65+j)}. {option}")
|
242 |
+
if show_entity_link is True:
|
243 |
+
if linked_entity:
|
244 |
+
st.write(f"**Entity Link:** {linked_entity}")
|
245 |
st.write("---")
|
246 |
data.append((context, keyword, question, options))
|
247 |
|
248 |
# Add the data to session state
|
249 |
st.session_state.data = data
|
250 |
+
# display_word_cloud()
|
251 |
+
print(data)
|
252 |
# Export buttons
|
253 |
if st.session_state.data is not None:
|
254 |
with st.sidebar:
|
|
|
263 |
|
264 |
|
265 |
else:
|
266 |
+
st.write("Please enter some text to generate questions.")
|
267 |
+
print("********************************************************************************")
|