|
from typing import List, Optional, Union, Tuple
|
|
|
|
import cv2
|
|
import numpy as np
|
|
|
|
from supervision.detection.core import Detections
|
|
from supervision.draw.color import Color, ColorPalette
|
|
|
|
|
|
class BoxAnnotator:
|
|
"""
|
|
A class for drawing bounding boxes on an image using detections provided.
|
|
|
|
Attributes:
|
|
color (Union[Color, ColorPalette]): The color to draw the bounding box,
|
|
can be a single color or a color palette
|
|
thickness (int): The thickness of the bounding box lines, default is 2
|
|
text_color (Color): The color of the text on the bounding box, default is white
|
|
text_scale (float): The scale of the text on the bounding box, default is 0.5
|
|
text_thickness (int): The thickness of the text on the bounding box,
|
|
default is 1
|
|
text_padding (int): The padding around the text on the bounding box,
|
|
default is 5
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
color: Union[Color, ColorPalette] = ColorPalette.DEFAULT,
|
|
thickness: int = 3,
|
|
text_color: Color = Color.BLACK,
|
|
text_scale: float = 0.5,
|
|
text_thickness: int = 2,
|
|
text_padding: int = 10,
|
|
avoid_overlap: bool = True,
|
|
):
|
|
self.color: Union[Color, ColorPalette] = color
|
|
self.thickness: int = thickness
|
|
self.text_color: Color = text_color
|
|
self.text_scale: float = text_scale
|
|
self.text_thickness: int = text_thickness
|
|
self.text_padding: int = text_padding
|
|
self.avoid_overlap: bool = avoid_overlap
|
|
|
|
def annotate(
|
|
self,
|
|
scene: np.ndarray,
|
|
detections: Detections,
|
|
labels: Optional[List[str]] = None,
|
|
skip_label: bool = False,
|
|
image_size: Optional[Tuple[int, int]] = None,
|
|
) -> np.ndarray:
|
|
"""
|
|
Draws bounding boxes on the frame using the detections provided.
|
|
|
|
Args:
|
|
scene (np.ndarray): The image on which the bounding boxes will be drawn
|
|
detections (Detections): The detections for which the
|
|
bounding boxes will be drawn
|
|
labels (Optional[List[str]]): An optional list of labels
|
|
corresponding to each detection. If `labels` are not provided,
|
|
corresponding `class_id` will be used as label.
|
|
skip_label (bool): Is set to `True`, skips bounding box label annotation.
|
|
Returns:
|
|
np.ndarray: The image with the bounding boxes drawn on it
|
|
|
|
Example:
|
|
```python
|
|
import supervision as sv
|
|
|
|
classes = ['person', ...]
|
|
image = ...
|
|
detections = sv.Detections(...)
|
|
|
|
box_annotator = sv.BoxAnnotator()
|
|
labels = [
|
|
f"{classes[class_id]} {confidence:0.2f}"
|
|
for _, _, confidence, class_id, _ in detections
|
|
]
|
|
annotated_frame = box_annotator.annotate(
|
|
scene=image.copy(),
|
|
detections=detections,
|
|
labels=labels
|
|
)
|
|
```
|
|
"""
|
|
font = cv2.FONT_HERSHEY_SIMPLEX
|
|
for i in range(len(detections)):
|
|
x1, y1, x2, y2 = detections.xyxy[i].astype(int)
|
|
class_id = (
|
|
detections.class_id[i] if detections.class_id is not None else None
|
|
)
|
|
idx = class_id if class_id is not None else i
|
|
color = (
|
|
self.color.by_idx(idx)
|
|
if isinstance(self.color, ColorPalette)
|
|
else self.color
|
|
)
|
|
cv2.rectangle(
|
|
img=scene,
|
|
pt1=(x1, y1),
|
|
pt2=(x2, y2),
|
|
color=color.as_bgr(),
|
|
thickness=self.thickness,
|
|
)
|
|
if skip_label:
|
|
continue
|
|
|
|
text = (
|
|
f"{class_id}"
|
|
if (labels is None or len(detections) != len(labels))
|
|
else labels[i]
|
|
)
|
|
|
|
text_width, text_height = cv2.getTextSize(
|
|
text=text,
|
|
fontFace=font,
|
|
fontScale=self.text_scale,
|
|
thickness=self.text_thickness,
|
|
)[0]
|
|
|
|
if not self.avoid_overlap:
|
|
text_x = x1 + self.text_padding
|
|
text_y = y1 - self.text_padding
|
|
|
|
text_background_x1 = x1
|
|
text_background_y1 = y1 - 2 * self.text_padding - text_height
|
|
|
|
text_background_x2 = x1 + 2 * self.text_padding + text_width
|
|
text_background_y2 = y1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
else:
|
|
text_x, text_y, text_background_x1, text_background_y1, text_background_x2, text_background_y2 = get_optimal_label_pos(self.text_padding, text_width, text_height, x1, y1, x2, y2, detections, image_size)
|
|
|
|
cv2.rectangle(
|
|
img=scene,
|
|
pt1=(text_background_x1, text_background_y1),
|
|
pt2=(text_background_x2, text_background_y2),
|
|
color=color.as_bgr(),
|
|
thickness=cv2.FILLED,
|
|
)
|
|
|
|
box_color = color.as_rgb()
|
|
luminance = 0.299 * box_color[0] + 0.587 * box_color[1] + 0.114 * box_color[2]
|
|
text_color = (0,0,0) if luminance > 160 else (255,255,255)
|
|
cv2.putText(
|
|
img=scene,
|
|
text=text,
|
|
org=(text_x, text_y),
|
|
fontFace=font,
|
|
fontScale=self.text_scale,
|
|
|
|
color=text_color,
|
|
thickness=self.text_thickness,
|
|
lineType=cv2.LINE_AA,
|
|
)
|
|
return scene
|
|
|
|
|
|
def box_area(box):
|
|
return (box[2] - box[0]) * (box[3] - box[1])
|
|
|
|
def intersection_area(box1, box2):
|
|
x1 = max(box1[0], box2[0])
|
|
y1 = max(box1[1], box2[1])
|
|
x2 = min(box1[2], box2[2])
|
|
y2 = min(box1[3], box2[3])
|
|
return max(0, x2 - x1) * max(0, y2 - y1)
|
|
|
|
def IoU(box1, box2, return_max=True):
|
|
intersection = intersection_area(box1, box2)
|
|
union = box_area(box1) + box_area(box2) - intersection
|
|
if box_area(box1) > 0 and box_area(box2) > 0:
|
|
ratio1 = intersection / box_area(box1)
|
|
ratio2 = intersection / box_area(box2)
|
|
else:
|
|
ratio1, ratio2 = 0, 0
|
|
if return_max:
|
|
return max(intersection / union, ratio1, ratio2)
|
|
else:
|
|
return intersection / union
|
|
|
|
|
|
def get_optimal_label_pos(text_padding, text_width, text_height, x1, y1, x2, y2, detections, image_size):
|
|
""" check overlap of text and background detection box, and get_optimal_label_pos,
|
|
pos: str, position of the text, must be one of 'top left', 'top right', 'outer left', 'outer right' TODO: if all are overlapping, return the last one, i.e. outer right
|
|
Threshold: default to 0.3
|
|
"""
|
|
|
|
def get_is_overlap(detections, text_background_x1, text_background_y1, text_background_x2, text_background_y2, image_size):
|
|
is_overlap = False
|
|
for i in range(len(detections)):
|
|
detection = detections.xyxy[i].astype(int)
|
|
if IoU([text_background_x1, text_background_y1, text_background_x2, text_background_y2], detection) > 0.3:
|
|
is_overlap = True
|
|
break
|
|
|
|
if text_background_x1 < 0 or text_background_x2 > image_size[0] or text_background_y1 < 0 or text_background_y2 > image_size[1]:
|
|
is_overlap = True
|
|
return is_overlap
|
|
|
|
|
|
text_x = x1 + text_padding
|
|
text_y = y1 - text_padding
|
|
|
|
text_background_x1 = x1
|
|
text_background_y1 = y1 - 2 * text_padding - text_height
|
|
|
|
text_background_x2 = x1 + 2 * text_padding + text_width
|
|
text_background_y2 = y1
|
|
is_overlap = get_is_overlap(detections, text_background_x1, text_background_y1, text_background_x2, text_background_y2, image_size)
|
|
if not is_overlap:
|
|
return text_x, text_y, text_background_x1, text_background_y1, text_background_x2, text_background_y2
|
|
|
|
|
|
text_x = x1 - text_padding - text_width
|
|
text_y = y1 + text_padding + text_height
|
|
|
|
text_background_x1 = x1 - 2 * text_padding - text_width
|
|
text_background_y1 = y1
|
|
|
|
text_background_x2 = x1
|
|
text_background_y2 = y1 + 2 * text_padding + text_height
|
|
is_overlap = get_is_overlap(detections, text_background_x1, text_background_y1, text_background_x2, text_background_y2, image_size)
|
|
if not is_overlap:
|
|
return text_x, text_y, text_background_x1, text_background_y1, text_background_x2, text_background_y2
|
|
|
|
|
|
|
|
text_x = x2 + text_padding
|
|
text_y = y1 + text_padding + text_height
|
|
|
|
text_background_x1 = x2
|
|
text_background_y1 = y1
|
|
|
|
text_background_x2 = x2 + 2 * text_padding + text_width
|
|
text_background_y2 = y1 + 2 * text_padding + text_height
|
|
|
|
is_overlap = get_is_overlap(detections, text_background_x1, text_background_y1, text_background_x2, text_background_y2, image_size)
|
|
if not is_overlap:
|
|
return text_x, text_y, text_background_x1, text_background_y1, text_background_x2, text_background_y2
|
|
|
|
|
|
text_x = x2 - text_padding - text_width
|
|
text_y = y1 - text_padding
|
|
|
|
text_background_x1 = x2 - 2 * text_padding - text_width
|
|
text_background_y1 = y1 - 2 * text_padding - text_height
|
|
|
|
text_background_x2 = x2
|
|
text_background_y2 = y1
|
|
|
|
is_overlap = get_is_overlap(detections, text_background_x1, text_background_y1, text_background_x2, text_background_y2, image_size)
|
|
if not is_overlap:
|
|
return text_x, text_y, text_background_x1, text_background_y1, text_background_x2, text_background_y2
|
|
|
|
return text_x, text_y, text_background_x1, text_background_y1, text_background_x2, text_background_y2
|
|
|