Spaces:
Sleeping
Sleeping
Update Questgen/main2.py
Browse files- Questgen/main2.py +482 -531
Questgen/main2.py
CHANGED
@@ -1,531 +1,482 @@
|
|
1 |
-
import numpy as np # linear algebra
|
2 |
-
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
|
3 |
-
import time
|
4 |
-
import torch
|
5 |
-
from transformers import T5ForConditionalGeneration,T5Tokenizer
|
6 |
-
from sklearn.feature_extraction.text import TfidfVectorizer
|
7 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
8 |
-
from transformers import pipeline
|
9 |
-
import random
|
10 |
-
import spacy
|
11 |
-
import zipfile
|
12 |
-
import os
|
13 |
-
import json
|
14 |
-
from sense2vec import Sense2Vec
|
15 |
-
import requests
|
16 |
-
from collections import OrderedDict
|
17 |
-
import string
|
18 |
-
import pke
|
19 |
-
import nltk
|
20 |
-
import numpy
|
21 |
-
import yake
|
22 |
-
from nltk import FreqDist
|
23 |
-
nltk.download('brown', quiet=True, force=True)
|
24 |
-
nltk.download('stopwords', quiet=True, force=True)
|
25 |
-
nltk.download('popular', quiet=True, force=True)
|
26 |
-
from nltk.corpus import stopwords
|
27 |
-
from nltk.corpus import brown
|
28 |
-
from similarity.normalized_levenshtein import NormalizedLevenshtein
|
29 |
-
from nltk.tokenize import sent_tokenize
|
30 |
-
from flashtext import KeywordProcessor
|
31 |
-
|
32 |
-
|
33 |
-
#
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
import
|
38 |
-
import
|
39 |
-
import
|
40 |
-
import
|
41 |
-
import
|
42 |
-
from
|
43 |
-
import
|
44 |
-
import
|
45 |
-
import
|
46 |
-
import
|
47 |
-
import
|
48 |
-
from
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
import
|
53 |
-
import
|
54 |
-
from
|
55 |
-
nltk.
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
for
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
#
|
200 |
-
|
201 |
-
#
|
202 |
-
#
|
203 |
-
#
|
204 |
-
#
|
205 |
-
#
|
206 |
-
#
|
207 |
-
#
|
208 |
-
#
|
209 |
-
#
|
210 |
-
|
211 |
-
#
|
212 |
-
|
213 |
-
#
|
214 |
-
#
|
215 |
-
|
216 |
-
|
217 |
-
#
|
218 |
-
|
219 |
-
# for
|
220 |
-
# out.append(
|
221 |
-
|
222 |
-
|
223 |
-
#
|
224 |
-
|
225 |
-
|
226 |
-
#
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
print(f"
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
phrases
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
#
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
individual_quest=
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
final_output["statement"] = modified_text
|
485 |
-
final_output["questions"] = generated_questions["questions"]
|
486 |
-
final_output["time_taken"] = end-start
|
487 |
-
|
488 |
-
if torch.device=='cuda':
|
489 |
-
torch.cuda.empty_cache()
|
490 |
-
|
491 |
-
return final_output
|
492 |
-
|
493 |
-
def predict_shortq(self, payload):
|
494 |
-
inp = {
|
495 |
-
"input_text": payload.get("input_text"),
|
496 |
-
"max_questions": payload.get("max_questions", 4)
|
497 |
-
}
|
498 |
-
|
499 |
-
text = inp['input_text']
|
500 |
-
sentences = tokenize_sentences(text)
|
501 |
-
joiner = " "
|
502 |
-
modified_text = joiner.join(sentences)
|
503 |
-
|
504 |
-
|
505 |
-
keywords = get_keywords(self.nlp,modified_text,inp['max_questions'],self.s2v,self.fdist,self.normalized_levenshtein,len(sentences) )
|
506 |
-
|
507 |
-
|
508 |
-
keyword_sentence_mapping = get_sentences_for_keyword(keywords, sentences)
|
509 |
-
|
510 |
-
for k in keyword_sentence_mapping.keys():
|
511 |
-
text_snippet = " ".join(keyword_sentence_mapping[k][:3])
|
512 |
-
keyword_sentence_mapping[k] = text_snippet
|
513 |
-
|
514 |
-
final_output = {}
|
515 |
-
|
516 |
-
if len(keyword_sentence_mapping.keys()) == 0:
|
517 |
-
print('ZERO')
|
518 |
-
return final_output
|
519 |
-
else:
|
520 |
-
|
521 |
-
generated_questions = generate_normal_questions(keyword_sentence_mapping,self.device,self.tokenizer,self.model)
|
522 |
-
print(generated_questions)
|
523 |
-
|
524 |
-
|
525 |
-
final_output["statement"] = modified_text
|
526 |
-
final_output["questions"] = generated_questions["questions"]
|
527 |
-
|
528 |
-
if torch.device=='cuda':
|
529 |
-
torch.cuda.empty_cache()
|
530 |
-
|
531 |
-
return final_output
|
|
|
1 |
+
import numpy as np # linear algebra
|
2 |
+
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
|
3 |
+
import time
|
4 |
+
import torch
|
5 |
+
from transformers import T5ForConditionalGeneration,T5Tokenizer
|
6 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
7 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
8 |
+
from transformers import pipeline
|
9 |
+
import random
|
10 |
+
import spacy
|
11 |
+
import zipfile
|
12 |
+
import os
|
13 |
+
import json
|
14 |
+
from sense2vec import Sense2Vec
|
15 |
+
import requests
|
16 |
+
from collections import OrderedDict
|
17 |
+
import string
|
18 |
+
import pke
|
19 |
+
import nltk
|
20 |
+
import numpy
|
21 |
+
import yake
|
22 |
+
from nltk import FreqDist
|
23 |
+
nltk.download('brown', quiet=True, force=True)
|
24 |
+
nltk.download('stopwords', quiet=True, force=True)
|
25 |
+
nltk.download('popular', quiet=True, force=True)
|
26 |
+
from nltk.corpus import stopwords
|
27 |
+
from nltk.corpus import brown
|
28 |
+
from similarity.normalized_levenshtein import NormalizedLevenshtein
|
29 |
+
from nltk.tokenize import sent_tokenize
|
30 |
+
from flashtext import KeywordProcessor
|
31 |
+
import time
|
32 |
+
import numpy as np # linear algebra
|
33 |
+
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
|
34 |
+
import time
|
35 |
+
import torch
|
36 |
+
from transformers import T5ForConditionalGeneration,T5Tokenizer
|
37 |
+
import random
|
38 |
+
import spacy
|
39 |
+
import zipfile
|
40 |
+
import os
|
41 |
+
import json
|
42 |
+
from sense2vec import Sense2Vec
|
43 |
+
import requests
|
44 |
+
from collections import OrderedDict
|
45 |
+
import string
|
46 |
+
import pke
|
47 |
+
import nltk
|
48 |
+
from nltk import FreqDist
|
49 |
+
nltk.download('brown')
|
50 |
+
nltk.download('stopwords')
|
51 |
+
nltk.download('popular')
|
52 |
+
from nltk.corpus import stopwords
|
53 |
+
from nltk.corpus import brown
|
54 |
+
# from similarity.normalized_levenshtein import NormalizedLevenshtein
|
55 |
+
from nltk.tokenize import sent_tokenize
|
56 |
+
# from flashtext import KeywordProcessor
|
57 |
+
|
58 |
+
def beam_search_decoding (inp_ids,attn_mask,model,tokenizer):
|
59 |
+
beam_output = model.generate(input_ids=inp_ids,
|
60 |
+
attention_mask=attn_mask,
|
61 |
+
max_length=256,
|
62 |
+
num_beams=10,
|
63 |
+
num_return_sequences=3,
|
64 |
+
no_repeat_ngram_size=2,
|
65 |
+
early_stopping=True
|
66 |
+
)
|
67 |
+
Questions = [tokenizer.decode(out, skip_special_tokens=True, clean_up_tokenization_spaces=True) for out in
|
68 |
+
beam_output]
|
69 |
+
return [Question.strip().capitalize() for Question in Questions]
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
def MCQs_available(word,s2v):
|
74 |
+
word = word.replace(" ", "_")
|
75 |
+
sense = s2v.get_best_sense(word)
|
76 |
+
if sense is not None:
|
77 |
+
return True
|
78 |
+
else:
|
79 |
+
return False
|
80 |
+
|
81 |
+
|
82 |
+
def edits(word):
|
83 |
+
"All edits that are one edit away from `word`."
|
84 |
+
letters = 'abcdefghijklmnopqrstuvwxyz '+string.punctuation
|
85 |
+
splits = [(word[:i], word[i:]) for i in range(len(word) + 1)]
|
86 |
+
deletes = [L + R[1:] for L, R in splits if R]
|
87 |
+
transposes = [L + R[1] + R[0] + R[2:] for L, R in splits if len(R)>1]
|
88 |
+
replaces = [L + c + R[1:] for L, R in splits if R for c in letters]
|
89 |
+
inserts = [L + c + R for L, R in splits for c in letters]
|
90 |
+
return set(deletes + transposes + replaces + inserts)
|
91 |
+
|
92 |
+
|
93 |
+
def sense2vec_get_words(word,s2v):
|
94 |
+
output = []
|
95 |
+
|
96 |
+
word_preprocessed = word.translate(word.maketrans("","", string.punctuation))
|
97 |
+
word_preprocessed = word_preprocessed.lower()
|
98 |
+
|
99 |
+
word_edits = edits(word_preprocessed)
|
100 |
+
|
101 |
+
word = word.replace(" ", "_")
|
102 |
+
|
103 |
+
sense = s2v.get_best_sense(word)
|
104 |
+
most_similar = s2v.most_similar(sense, n=15)
|
105 |
+
|
106 |
+
compare_list = [word_preprocessed]
|
107 |
+
for each_word in most_similar:
|
108 |
+
append_word = each_word[0].split("|")[0].replace("_", " ")
|
109 |
+
append_word = append_word.strip()
|
110 |
+
append_word_processed = append_word.lower()
|
111 |
+
append_word_processed = append_word_processed.translate(append_word_processed.maketrans("","", string.punctuation))
|
112 |
+
if append_word_processed not in compare_list and word_preprocessed not in append_word_processed and append_word_processed not in word_edits:
|
113 |
+
output.append(append_word.title())
|
114 |
+
compare_list.append(append_word_processed)
|
115 |
+
|
116 |
+
|
117 |
+
out = list(OrderedDict.fromkeys(output))
|
118 |
+
|
119 |
+
return out
|
120 |
+
|
121 |
+
def get_options(answer,s2v):
|
122 |
+
distractors =[]
|
123 |
+
|
124 |
+
try:
|
125 |
+
distractors = sense2vec_get_words(answer,s2v)
|
126 |
+
if len(distractors) > 0:
|
127 |
+
print(" Sense2vec_distractors successful for word : ", answer)
|
128 |
+
return distractors,"sense2vec"
|
129 |
+
except:
|
130 |
+
print (" Sense2vec_distractors failed for word : ",answer)
|
131 |
+
|
132 |
+
|
133 |
+
return distractors,"None"
|
134 |
+
|
135 |
+
def tokenize_sentences(text):
|
136 |
+
sentences = [sent_tokenize(text)]
|
137 |
+
sentences = [y for x in sentences for y in x]
|
138 |
+
# Remove any short sentences less than 20 letters.
|
139 |
+
sentences = [sentence.strip() for sentence in sentences if len(sentence) > 5]
|
140 |
+
return sentences
|
141 |
+
|
142 |
+
|
143 |
+
def get_sentences_for_keyword(keywords, sentences):
|
144 |
+
keyword_processor = KeywordProcessor()
|
145 |
+
keyword_sentences = {}
|
146 |
+
for word in keywords:
|
147 |
+
word = word.strip()
|
148 |
+
keyword_sentences[word] = []
|
149 |
+
keyword_processor.add_keyword(word)
|
150 |
+
for sentence in sentences:
|
151 |
+
keywords_found = keyword_processor.extract_keywords(sentence)
|
152 |
+
for key in keywords_found:
|
153 |
+
keyword_sentences[key].append(sentence)
|
154 |
+
|
155 |
+
for key in keyword_sentences.keys():
|
156 |
+
values = keyword_sentences[key]
|
157 |
+
values = sorted(values, key=len, reverse=True)
|
158 |
+
keyword_sentences[key] = values
|
159 |
+
|
160 |
+
delete_keys = []
|
161 |
+
for k in keyword_sentences.keys():
|
162 |
+
if len(keyword_sentences[k]) == 0:
|
163 |
+
delete_keys.append(k)
|
164 |
+
for del_key in delete_keys:
|
165 |
+
del keyword_sentences[del_key]
|
166 |
+
print(keyword_sentences)
|
167 |
+
return keyword_sentences
|
168 |
+
|
169 |
+
|
170 |
+
def is_far(words_list,currentword,thresh,normalized_levenshtein):
|
171 |
+
threshold = thresh
|
172 |
+
score_list =[]
|
173 |
+
for word in words_list:
|
174 |
+
score_list.append(normalized_levenshtein.distance(word.lower(),currentword.lower()))
|
175 |
+
if min(score_list)>=threshold:
|
176 |
+
return True
|
177 |
+
else:
|
178 |
+
return False
|
179 |
+
|
180 |
+
def filter_phrases(phrase_keys,max,normalized_levenshtein ):
|
181 |
+
filtered_phrases =[]
|
182 |
+
if len(phrase_keys)>0:
|
183 |
+
filtered_phrases.append(phrase_keys[0])
|
184 |
+
for ph in phrase_keys[1:]:
|
185 |
+
if is_far(filtered_phrases,ph,0.7,normalized_levenshtein ):
|
186 |
+
filtered_phrases.append(ph)
|
187 |
+
if len(filtered_phrases)>=max:
|
188 |
+
break
|
189 |
+
return filtered_phrases
|
190 |
+
|
191 |
+
|
192 |
+
def get_nouns_multipartite(text):
|
193 |
+
# out = []
|
194 |
+
|
195 |
+
# extractor = pke.unsupervised.MultipartiteRank()
|
196 |
+
# extractor.load_document(input=text, language='en')
|
197 |
+
# pos = {'PROPN', 'NOUN'}
|
198 |
+
# stoplist = list(string.punctuation)
|
199 |
+
# stoplist += stopwords.words('english')
|
200 |
+
# extractor.candidate_selection(pos=pos)
|
201 |
+
# # 4. build the Multipartite graph and rank candidates using random walk,
|
202 |
+
# # alpha controls the weight adjustment mechanism, see TopicRank for
|
203 |
+
# # threshold/method parameters.
|
204 |
+
# try:
|
205 |
+
# extractor.candidate_weighting(alpha=1.1,
|
206 |
+
# threshold=0.75,
|
207 |
+
# method='average')
|
208 |
+
# except:
|
209 |
+
# return out
|
210 |
+
|
211 |
+
# keyphrases = extractor.get_n_best(n=10)
|
212 |
+
|
213 |
+
# for key in keyphrases:
|
214 |
+
# out.append(key[0])
|
215 |
+
|
216 |
+
# nlp = spacy.load("en_core_web_sm")
|
217 |
+
# labels = nlp(text)
|
218 |
+
|
219 |
+
# for i in (labels.ents):
|
220 |
+
# out.append(str(i))
|
221 |
+
nlp = spacy.load('en_core_web_sm')
|
222 |
+
doc = nlp(text)
|
223 |
+
# Extract named entities using spaCy
|
224 |
+
spacy_entities = [ent.text for ent in doc.ents]
|
225 |
+
print(f"\n\nSpacy Entities: {spacy_entities}\n\n")
|
226 |
+
# Combine both NER results and remove duplicates
|
227 |
+
entities = list(set(spacy_entities))
|
228 |
+
|
229 |
+
# Extract nouns and verbs using spaCy
|
230 |
+
nouns = [chunk.text for chunk in doc.noun_chunks]
|
231 |
+
verbs = [token.lemma_ for token in doc if token.pos_ == 'VERB']
|
232 |
+
print(f"Spacy Nouns: {nouns}\n\n")
|
233 |
+
print(f"Spacy Verbs: {verbs}\n\n")
|
234 |
+
|
235 |
+
# Use YAKE for keyphrase extraction
|
236 |
+
yake_extractor = yake.KeywordExtractor()
|
237 |
+
yake_keywords = yake_extractor.extract_keywords(text)
|
238 |
+
yake_keywords = [kw[0] for kw in yake_keywords]
|
239 |
+
print(f"Yake: {yake_keywords}\n\n")
|
240 |
+
# Combine all keywords and remove duplicates
|
241 |
+
combined_keywords = list(set(entities + nouns + verbs + yake_keywords))
|
242 |
+
vectorizer = TfidfVectorizer()
|
243 |
+
tfidf_matrix = vectorizer.fit_transform(combined_keywords)
|
244 |
+
similarity_matrix = cosine_similarity(tfidf_matrix)
|
245 |
+
clusters = []
|
246 |
+
|
247 |
+
similarity_threshold = 0.45
|
248 |
+
|
249 |
+
for idx, word in enumerate(combined_keywords):
|
250 |
+
added_to_cluster = False
|
251 |
+
for cluster in clusters:
|
252 |
+
# Check if the word is similar to any word in the existing cluster
|
253 |
+
if any(similarity_matrix[idx, other_idx] > similarity_threshold for other_idx in cluster):
|
254 |
+
cluster.append(idx)
|
255 |
+
added_to_cluster = True
|
256 |
+
break
|
257 |
+
if not added_to_cluster:
|
258 |
+
clusters.append([idx])
|
259 |
+
|
260 |
+
# Step 4: Select representative words from each cluster
|
261 |
+
representative_words = [combined_keywords[cluster[0]] for cluster in clusters]
|
262 |
+
|
263 |
+
# Print the representative words
|
264 |
+
print("Keywords after removing similar words: ", representative_words)
|
265 |
+
# return combined_keywords
|
266 |
+
|
267 |
+
return representative_words
|
268 |
+
|
269 |
+
|
270 |
+
def get_phrases(doc):
|
271 |
+
phrases={}
|
272 |
+
for np in doc.noun_chunks:
|
273 |
+
phrase =np.text
|
274 |
+
len_phrase = len(phrase.split())
|
275 |
+
if len_phrase > 1:
|
276 |
+
if phrase not in phrases:
|
277 |
+
phrases[phrase]=1
|
278 |
+
else:
|
279 |
+
phrases[phrase]=phrases[phrase]+1
|
280 |
+
|
281 |
+
phrase_keys=list(phrases.keys())
|
282 |
+
phrase_keys = sorted(phrase_keys, key= lambda x: len(x),reverse=True)
|
283 |
+
phrase_keys=phrase_keys[:50]
|
284 |
+
return phrase_keys
|
285 |
+
|
286 |
+
|
287 |
+
|
288 |
+
def get_keywords(nlp,text,max_keywords,s2v,fdist,normalized_levenshtein,no_of_sentences):
|
289 |
+
doc = nlp(text)
|
290 |
+
max_keywords = int(max_keywords)
|
291 |
+
|
292 |
+
keywords = get_nouns_multipartite(text)
|
293 |
+
# keywords = sorted(keywords, key=lambda x: fdist[x])
|
294 |
+
# keywords = filter_phrases(keywords, max_keywords,normalized_levenshtein )
|
295 |
+
|
296 |
+
# phrase_keys = get_phrases(doc)
|
297 |
+
# filtered_phrases = filter_phrases(phrase_keys, max_keywords,normalized_levenshtein )
|
298 |
+
|
299 |
+
# total_phrases = keywords + filtered_phrases
|
300 |
+
|
301 |
+
# total_phrases_filtered = filter_phrases(total_phrases, min(max_keywords, 2*no_of_sentences),normalized_levenshtein )
|
302 |
+
total_phrases_filtered = keywords
|
303 |
+
|
304 |
+
|
305 |
+
answers = []
|
306 |
+
for answer in total_phrases_filtered:
|
307 |
+
if answer not in answers and MCQs_available(answer,s2v):
|
308 |
+
answers.append(answer)
|
309 |
+
|
310 |
+
# answers = answers[:max_keywords]
|
311 |
+
# answers = keywords
|
312 |
+
return answers
|
313 |
+
|
314 |
+
def generate_questions_mcq(keyword_sent_mapping, device, tokenizer, model, sense2vec, normalized_levenshtein):
|
315 |
+
batch_text = []
|
316 |
+
answers = list(keyword_sent_mapping.keys()) # Get all answers from the keys
|
317 |
+
|
318 |
+
for answer in answers:
|
319 |
+
value_list = keyword_sent_mapping[answer] # Get list of sentences for this answer
|
320 |
+
for txt in value_list:
|
321 |
+
text = "<context>\t" + txt + "\t<answer>\t" + answer
|
322 |
+
batch_text.append(text)
|
323 |
+
|
324 |
+
encoding = tokenizer.batch_encode_plus(batch_text, pad_to_max_length=True, return_tensors="pt")
|
325 |
+
|
326 |
+
print("Running model for generation")
|
327 |
+
input_ids, attention_masks = encoding["input_ids"].to(device), encoding["attention_mask"].to(device)
|
328 |
+
|
329 |
+
with torch.no_grad():
|
330 |
+
outs = model.generate(input_ids=input_ids,
|
331 |
+
attention_mask=attention_masks,
|
332 |
+
max_length=150)
|
333 |
+
|
334 |
+
output_array = {"questions": []}
|
335 |
+
|
336 |
+
for index, val in enumerate(answers):
|
337 |
+
out = outs[index, :]
|
338 |
+
dec = tokenizer.decode(out, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
339 |
+
|
340 |
+
Question = dec.replace("question:", "")
|
341 |
+
Question = Question.strip()
|
342 |
+
|
343 |
+
individual_question = {
|
344 |
+
"question_statement": Question,
|
345 |
+
"question_type": "MCQ",
|
346 |
+
"answer": val,
|
347 |
+
"id": index + 1,
|
348 |
+
"options": [],
|
349 |
+
"options_algorithm": [],
|
350 |
+
"extra_options": [],
|
351 |
+
"context": keyword_sent_mapping[val] # Assuming keyword_sent_mapping is a dictionary of lists
|
352 |
+
}
|
353 |
+
|
354 |
+
# Get options and filter them
|
355 |
+
individual_question["options"], individual_question["options_algorithm"] = get_options(val, sense2vec)
|
356 |
+
individual_question["options"] = filter_phrases(individual_question["options"], 10, normalized_levenshtein)
|
357 |
+
|
358 |
+
# Adjusting the number of options and extra options
|
359 |
+
index = 3
|
360 |
+
individual_question["extra_options"] = individual_question["options"][index:]
|
361 |
+
individual_question["options"] = individual_question["options"][:index]
|
362 |
+
|
363 |
+
if len(individual_question["options"]) > 0:
|
364 |
+
output_array["questions"].append(individual_question)
|
365 |
+
|
366 |
+
return output_array
|
367 |
+
|
368 |
+
|
369 |
+
|
370 |
+
def generate_normal_questions(keyword_sent_mapping,device,tokenizer,model): #for normal one word questions
|
371 |
+
batch_text = []
|
372 |
+
answers = keyword_sent_mapping.keys()
|
373 |
+
for answer in answers:
|
374 |
+
txt = keyword_sent_mapping[answer]
|
375 |
+
context = "context: " + txt
|
376 |
+
text = context + " " + "answer: " + answer + " </s>"
|
377 |
+
batch_text.append(text)
|
378 |
+
|
379 |
+
encoding = tokenizer.batch_encode_plus(batch_text, pad_to_max_length=True, return_tensors="pt")
|
380 |
+
|
381 |
+
|
382 |
+
print ("Running model for generation")
|
383 |
+
input_ids, attention_masks = encoding["input_ids"].to(device), encoding["attention_mask"].to(device)
|
384 |
+
|
385 |
+
with torch.no_grad():
|
386 |
+
outs = model.generate(input_ids=input_ids,
|
387 |
+
attention_mask=attention_masks,
|
388 |
+
max_length=150)
|
389 |
+
|
390 |
+
output_array ={}
|
391 |
+
output_array["questions"] =[]
|
392 |
+
|
393 |
+
for index, val in enumerate(answers):
|
394 |
+
individual_quest= {}
|
395 |
+
out = outs[index, :]
|
396 |
+
dec = tokenizer.decode(out, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
397 |
+
|
398 |
+
Question= dec.replace('question:', '')
|
399 |
+
Question= Question.strip()
|
400 |
+
|
401 |
+
individual_quest['Question']= Question
|
402 |
+
individual_quest['Answer']= val
|
403 |
+
individual_quest["id"] = index+1
|
404 |
+
individual_quest["context"] = keyword_sent_mapping[val]
|
405 |
+
|
406 |
+
output_array["questions"].append(individual_quest)
|
407 |
+
|
408 |
+
return output_array
|
409 |
+
|
410 |
+
def random_choice():
|
411 |
+
a = random.choice([0,1])
|
412 |
+
return bool(a)
|
413 |
+
|
414 |
+
class QGen:
|
415 |
+
|
416 |
+
def __init__(self):
|
417 |
+
|
418 |
+
self.tokenizer = T5Tokenizer.from_pretrained('t5-large')
|
419 |
+
model = T5ForConditionalGeneration.from_pretrained('DevBM/t5-large-squad')
|
420 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
421 |
+
model.to(device)
|
422 |
+
# model.eval()
|
423 |
+
self.device = device
|
424 |
+
self.model = model
|
425 |
+
self.nlp = spacy.load('en_core_web_sm')
|
426 |
+
|
427 |
+
self.s2v = Sense2Vec().from_disk('s2v_old')
|
428 |
+
|
429 |
+
self.fdist = FreqDist(brown.words())
|
430 |
+
self.normalized_levenshtein = NormalizedLevenshtein()
|
431 |
+
self.set_seed(42)
|
432 |
+
|
433 |
+
def set_seed(self,seed):
|
434 |
+
numpy.random.seed(seed)
|
435 |
+
torch.manual_seed(seed)
|
436 |
+
if torch.cuda.is_available():
|
437 |
+
torch.cuda.manual_seed_all(seed)
|
438 |
+
|
439 |
+
def predict_mcq(self, payload):
|
440 |
+
start = time.time()
|
441 |
+
inp = {
|
442 |
+
"input_text": payload.get("input_text"),
|
443 |
+
"max_questions": payload.get("max_questions", 4)
|
444 |
+
}
|
445 |
+
|
446 |
+
text = inp['input_text']
|
447 |
+
sentences = tokenize_sentences(text)
|
448 |
+
joiner = " "
|
449 |
+
modified_text = joiner.join(sentences)
|
450 |
+
|
451 |
+
|
452 |
+
keywords = get_keywords(self.nlp,modified_text,inp['max_questions'],self.s2v,self.fdist,self.normalized_levenshtein,len(sentences) )
|
453 |
+
|
454 |
+
|
455 |
+
keyword_sentence_mapping = get_sentences_for_keyword(keywords, sentences)
|
456 |
+
|
457 |
+
# for k in keyword_sentence_mapping.keys():
|
458 |
+
# text_snippet = " ".join(keyword_sentence_mapping[k][:3])
|
459 |
+
# keyword_sentence_mapping[k] = text_snippet
|
460 |
+
|
461 |
+
|
462 |
+
final_output = {}
|
463 |
+
|
464 |
+
if len(keyword_sentence_mapping.keys()) == 0:
|
465 |
+
return final_output
|
466 |
+
else:
|
467 |
+
try:
|
468 |
+
generated_questions = generate_questions_mcq(keyword_sentence_mapping,self.device,self.tokenizer,self.model,self.s2v,self.normalized_levenshtein)
|
469 |
+
|
470 |
+
except:
|
471 |
+
return final_output
|
472 |
+
end = time.time()
|
473 |
+
|
474 |
+
final_output["statement"] = modified_text
|
475 |
+
final_output["questions"] = generated_questions["questions"]
|
476 |
+
final_output["time_taken"] = end-start
|
477 |
+
|
478 |
+
if torch.device=='cuda':
|
479 |
+
torch.cuda.empty_cache()
|
480 |
+
|
481 |
+
return final_output
|
482 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|