Spaces:
Sleeping
Sleeping
| # https://github.com/yl4579/StyleTTS2/blob/main/Modules/istftnet.py | |
| from scipy.signal import get_window | |
| from torch.nn import Conv1d, ConvTranspose1d | |
| from torch.nn.utils import weight_norm, remove_weight_norm | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| # https://github.com/yl4579/StyleTTS2/blob/main/Modules/utils.py | |
| def init_weights(m, mean=0.0, std=0.01): | |
| classname = m.__class__.__name__ | |
| if classname.find("Conv") != -1: | |
| m.weight.data.normal_(mean, std) | |
| def get_padding(kernel_size, dilation=1): | |
| return int((kernel_size*dilation - dilation)/2) | |
| LRELU_SLOPE = 0.1 | |
| class AdaIN1d(nn.Module): | |
| def __init__(self, style_dim, num_features): | |
| super().__init__() | |
| self.norm = nn.InstanceNorm1d(num_features, affine=False) | |
| self.fc = nn.Linear(style_dim, num_features*2) | |
| def forward(self, x, s): | |
| h = self.fc(s) | |
| h = h.view(h.size(0), h.size(1), 1) | |
| gamma, beta = torch.chunk(h, chunks=2, dim=1) | |
| return (1 + gamma) * self.norm(x) + beta | |
| class AdaINResBlock1(torch.nn.Module): | |
| def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), style_dim=64): | |
| super(AdaINResBlock1, self).__init__() | |
| self.convs1 = nn.ModuleList([ | |
| weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], | |
| padding=get_padding(kernel_size, dilation[0]))), | |
| weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], | |
| padding=get_padding(kernel_size, dilation[1]))), | |
| weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2], | |
| padding=get_padding(kernel_size, dilation[2]))) | |
| ]) | |
| self.convs1.apply(init_weights) | |
| self.convs2 = nn.ModuleList([ | |
| weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, | |
| padding=get_padding(kernel_size, 1))), | |
| weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, | |
| padding=get_padding(kernel_size, 1))), | |
| weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, | |
| padding=get_padding(kernel_size, 1))) | |
| ]) | |
| self.convs2.apply(init_weights) | |
| self.adain1 = nn.ModuleList([ | |
| AdaIN1d(style_dim, channels), | |
| AdaIN1d(style_dim, channels), | |
| AdaIN1d(style_dim, channels), | |
| ]) | |
| self.adain2 = nn.ModuleList([ | |
| AdaIN1d(style_dim, channels), | |
| AdaIN1d(style_dim, channels), | |
| AdaIN1d(style_dim, channels), | |
| ]) | |
| self.alpha1 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))]) | |
| self.alpha2 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))]) | |
| def forward(self, x, s): | |
| for c1, c2, n1, n2, a1, a2 in zip(self.convs1, self.convs2, self.adain1, self.adain2, self.alpha1, self.alpha2): | |
| xt = n1(x, s) | |
| xt = xt + (1 / a1) * (torch.sin(a1 * xt) ** 2) # Snake1D | |
| xt = c1(xt) | |
| xt = n2(xt, s) | |
| xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2) # Snake1D | |
| xt = c2(xt) | |
| x = xt + x | |
| return x | |
| def remove_weight_norm(self): | |
| for l in self.convs1: | |
| remove_weight_norm(l) | |
| for l in self.convs2: | |
| remove_weight_norm(l) | |
| class TorchSTFT(torch.nn.Module): | |
| def __init__(self, filter_length=800, hop_length=200, win_length=800, window='hann'): | |
| super().__init__() | |
| self.filter_length = filter_length | |
| self.hop_length = hop_length | |
| self.win_length = win_length | |
| self.window = torch.from_numpy(get_window(window, win_length, fftbins=True).astype(np.float32)) | |
| def transform(self, input_data): | |
| forward_transform = torch.stft( | |
| input_data, | |
| self.filter_length, self.hop_length, self.win_length, window=self.window.to(input_data.device), | |
| return_complex=True) | |
| return torch.abs(forward_transform), torch.angle(forward_transform) | |
| def inverse(self, magnitude, phase): | |
| inverse_transform = torch.istft( | |
| magnitude * torch.exp(phase * 1j), | |
| self.filter_length, self.hop_length, self.win_length, window=self.window.to(magnitude.device)) | |
| return inverse_transform.unsqueeze(-2) # unsqueeze to stay consistent with conv_transpose1d implementation | |
| def forward(self, input_data): | |
| self.magnitude, self.phase = self.transform(input_data) | |
| reconstruction = self.inverse(self.magnitude, self.phase) | |
| return reconstruction | |
| class SineGen(torch.nn.Module): | |
| """ Definition of sine generator | |
| SineGen(samp_rate, harmonic_num = 0, | |
| sine_amp = 0.1, noise_std = 0.003, | |
| voiced_threshold = 0, | |
| flag_for_pulse=False) | |
| samp_rate: sampling rate in Hz | |
| harmonic_num: number of harmonic overtones (default 0) | |
| sine_amp: amplitude of sine-wavefrom (default 0.1) | |
| noise_std: std of Gaussian noise (default 0.003) | |
| voiced_thoreshold: F0 threshold for U/V classification (default 0) | |
| flag_for_pulse: this SinGen is used inside PulseGen (default False) | |
| Note: when flag_for_pulse is True, the first time step of a voiced | |
| segment is always sin(np.pi) or cos(0) | |
| """ | |
| def __init__(self, samp_rate, upsample_scale, harmonic_num=0, | |
| sine_amp=0.1, noise_std=0.003, | |
| voiced_threshold=0, | |
| flag_for_pulse=False): | |
| super(SineGen, self).__init__() | |
| self.sine_amp = sine_amp | |
| self.noise_std = noise_std | |
| self.harmonic_num = harmonic_num | |
| self.dim = self.harmonic_num + 1 | |
| self.sampling_rate = samp_rate | |
| self.voiced_threshold = voiced_threshold | |
| self.flag_for_pulse = flag_for_pulse | |
| self.upsample_scale = upsample_scale | |
| def _f02uv(self, f0): | |
| # generate uv signal | |
| uv = (f0 > self.voiced_threshold).type(torch.float32) | |
| return uv | |
| def _f02sine(self, f0_values): | |
| """ f0_values: (batchsize, length, dim) | |
| where dim indicates fundamental tone and overtones | |
| """ | |
| # convert to F0 in rad. The interger part n can be ignored | |
| # because 2 * np.pi * n doesn't affect phase | |
| rad_values = (f0_values / self.sampling_rate) % 1 | |
| # initial phase noise (no noise for fundamental component) | |
| rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \ | |
| device=f0_values.device) | |
| rand_ini[:, 0] = 0 | |
| rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini | |
| # instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad) | |
| if not self.flag_for_pulse: | |
| # # for normal case | |
| # # To prevent torch.cumsum numerical overflow, | |
| # # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1. | |
| # # Buffer tmp_over_one_idx indicates the time step to add -1. | |
| # # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi | |
| # tmp_over_one = torch.cumsum(rad_values, 1) % 1 | |
| # tmp_over_one_idx = (padDiff(tmp_over_one)) < 0 | |
| # cumsum_shift = torch.zeros_like(rad_values) | |
| # cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0 | |
| # phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi | |
| rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2), | |
| scale_factor=1/self.upsample_scale, | |
| mode="linear").transpose(1, 2) | |
| # tmp_over_one = torch.cumsum(rad_values, 1) % 1 | |
| # tmp_over_one_idx = (padDiff(tmp_over_one)) < 0 | |
| # cumsum_shift = torch.zeros_like(rad_values) | |
| # cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0 | |
| phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi | |
| phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale, | |
| scale_factor=self.upsample_scale, mode="linear").transpose(1, 2) | |
| sines = torch.sin(phase) | |
| else: | |
| # If necessary, make sure that the first time step of every | |
| # voiced segments is sin(pi) or cos(0) | |
| # This is used for pulse-train generation | |
| # identify the last time step in unvoiced segments | |
| uv = self._f02uv(f0_values) | |
| uv_1 = torch.roll(uv, shifts=-1, dims=1) | |
| uv_1[:, -1, :] = 1 | |
| u_loc = (uv < 1) * (uv_1 > 0) | |
| # get the instantanouse phase | |
| tmp_cumsum = torch.cumsum(rad_values, dim=1) | |
| # different batch needs to be processed differently | |
| for idx in range(f0_values.shape[0]): | |
| temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :] | |
| temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :] | |
| # stores the accumulation of i.phase within | |
| # each voiced segments | |
| tmp_cumsum[idx, :, :] = 0 | |
| tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum | |
| # rad_values - tmp_cumsum: remove the accumulation of i.phase | |
| # within the previous voiced segment. | |
| i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1) | |
| # get the sines | |
| sines = torch.cos(i_phase * 2 * np.pi) | |
| return sines | |
| def forward(self, f0): | |
| """ sine_tensor, uv = forward(f0) | |
| input F0: tensor(batchsize=1, length, dim=1) | |
| f0 for unvoiced steps should be 0 | |
| output sine_tensor: tensor(batchsize=1, length, dim) | |
| output uv: tensor(batchsize=1, length, 1) | |
| """ | |
| f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, | |
| device=f0.device) | |
| # fundamental component | |
| fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device)) | |
| # generate sine waveforms | |
| sine_waves = self._f02sine(fn) * self.sine_amp | |
| # generate uv signal | |
| # uv = torch.ones(f0.shape) | |
| # uv = uv * (f0 > self.voiced_threshold) | |
| uv = self._f02uv(f0) | |
| # noise: for unvoiced should be similar to sine_amp | |
| # std = self.sine_amp/3 -> max value ~ self.sine_amp | |
| # . for voiced regions is self.noise_std | |
| noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3 | |
| noise = noise_amp * torch.randn_like(sine_waves) | |
| # first: set the unvoiced part to 0 by uv | |
| # then: additive noise | |
| sine_waves = sine_waves * uv + noise | |
| return sine_waves, uv, noise | |
| class SourceModuleHnNSF(torch.nn.Module): | |
| """ SourceModule for hn-nsf | |
| SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1, | |
| add_noise_std=0.003, voiced_threshod=0) | |
| sampling_rate: sampling_rate in Hz | |
| harmonic_num: number of harmonic above F0 (default: 0) | |
| sine_amp: amplitude of sine source signal (default: 0.1) | |
| add_noise_std: std of additive Gaussian noise (default: 0.003) | |
| note that amplitude of noise in unvoiced is decided | |
| by sine_amp | |
| voiced_threshold: threhold to set U/V given F0 (default: 0) | |
| Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) | |
| F0_sampled (batchsize, length, 1) | |
| Sine_source (batchsize, length, 1) | |
| noise_source (batchsize, length 1) | |
| uv (batchsize, length, 1) | |
| """ | |
| def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1, | |
| add_noise_std=0.003, voiced_threshod=0): | |
| super(SourceModuleHnNSF, self).__init__() | |
| self.sine_amp = sine_amp | |
| self.noise_std = add_noise_std | |
| # to produce sine waveforms | |
| self.l_sin_gen = SineGen(sampling_rate, upsample_scale, harmonic_num, | |
| sine_amp, add_noise_std, voiced_threshod) | |
| # to merge source harmonics into a single excitation | |
| self.l_linear = torch.nn.Linear(harmonic_num + 1, 1) | |
| self.l_tanh = torch.nn.Tanh() | |
| def forward(self, x): | |
| """ | |
| Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) | |
| F0_sampled (batchsize, length, 1) | |
| Sine_source (batchsize, length, 1) | |
| noise_source (batchsize, length 1) | |
| """ | |
| # source for harmonic branch | |
| with torch.no_grad(): | |
| sine_wavs, uv, _ = self.l_sin_gen(x) | |
| sine_merge = self.l_tanh(self.l_linear(sine_wavs)) | |
| # source for noise branch, in the same shape as uv | |
| noise = torch.randn_like(uv) * self.sine_amp / 3 | |
| return sine_merge, noise, uv | |
| def padDiff(x): | |
| return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0) | |
| class Generator(torch.nn.Module): | |
| def __init__(self, style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size): | |
| super(Generator, self).__init__() | |
| self.num_kernels = len(resblock_kernel_sizes) | |
| self.num_upsamples = len(upsample_rates) | |
| resblock = AdaINResBlock1 | |
| self.m_source = SourceModuleHnNSF( | |
| sampling_rate=24000, | |
| upsample_scale=np.prod(upsample_rates) * gen_istft_hop_size, | |
| harmonic_num=8, voiced_threshod=10) | |
| self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * gen_istft_hop_size) | |
| self.noise_convs = nn.ModuleList() | |
| self.noise_res = nn.ModuleList() | |
| self.ups = nn.ModuleList() | |
| for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): | |
| self.ups.append(weight_norm( | |
| ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)), | |
| k, u, padding=(k-u)//2))) | |
| self.resblocks = nn.ModuleList() | |
| for i in range(len(self.ups)): | |
| ch = upsample_initial_channel//(2**(i+1)) | |
| for j, (k, d) in enumerate(zip(resblock_kernel_sizes,resblock_dilation_sizes)): | |
| self.resblocks.append(resblock(ch, k, d, style_dim)) | |
| c_cur = upsample_initial_channel // (2 ** (i + 1)) | |
| if i + 1 < len(upsample_rates): # | |
| stride_f0 = np.prod(upsample_rates[i + 1:]) | |
| self.noise_convs.append(Conv1d( | |
| gen_istft_n_fft + 2, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2)) | |
| self.noise_res.append(resblock(c_cur, 7, [1,3,5], style_dim)) | |
| else: | |
| self.noise_convs.append(Conv1d(gen_istft_n_fft + 2, c_cur, kernel_size=1)) | |
| self.noise_res.append(resblock(c_cur, 11, [1,3,5], style_dim)) | |
| self.post_n_fft = gen_istft_n_fft | |
| self.conv_post = weight_norm(Conv1d(ch, self.post_n_fft + 2, 7, 1, padding=3)) | |
| self.ups.apply(init_weights) | |
| self.conv_post.apply(init_weights) | |
| self.reflection_pad = torch.nn.ReflectionPad1d((1, 0)) | |
| self.stft = TorchSTFT(filter_length=gen_istft_n_fft, hop_length=gen_istft_hop_size, win_length=gen_istft_n_fft) | |
| def forward(self, x, s, f0): | |
| with torch.no_grad(): | |
| f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t | |
| har_source, noi_source, uv = self.m_source(f0) | |
| har_source = har_source.transpose(1, 2).squeeze(1) | |
| har_spec, har_phase = self.stft.transform(har_source) | |
| har = torch.cat([har_spec, har_phase], dim=1) | |
| for i in range(self.num_upsamples): | |
| x = F.leaky_relu(x, LRELU_SLOPE) | |
| x_source = self.noise_convs[i](har) | |
| x_source = self.noise_res[i](x_source, s) | |
| x = self.ups[i](x) | |
| if i == self.num_upsamples - 1: | |
| x = self.reflection_pad(x) | |
| x = x + x_source | |
| xs = None | |
| for j in range(self.num_kernels): | |
| if xs is None: | |
| xs = self.resblocks[i*self.num_kernels+j](x, s) | |
| else: | |
| xs += self.resblocks[i*self.num_kernels+j](x, s) | |
| x = xs / self.num_kernels | |
| x = F.leaky_relu(x) | |
| x = self.conv_post(x) | |
| spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :]) | |
| phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :]) | |
| return self.stft.inverse(spec, phase) | |
| def fw_phase(self, x, s): | |
| for i in range(self.num_upsamples): | |
| x = F.leaky_relu(x, LRELU_SLOPE) | |
| x = self.ups[i](x) | |
| xs = None | |
| for j in range(self.num_kernels): | |
| if xs is None: | |
| xs = self.resblocks[i*self.num_kernels+j](x, s) | |
| else: | |
| xs += self.resblocks[i*self.num_kernels+j](x, s) | |
| x = xs / self.num_kernels | |
| x = F.leaky_relu(x) | |
| x = self.reflection_pad(x) | |
| x = self.conv_post(x) | |
| spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :]) | |
| phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :]) | |
| return spec, phase | |
| def remove_weight_norm(self): | |
| print('Removing weight norm...') | |
| for l in self.ups: | |
| remove_weight_norm(l) | |
| for l in self.resblocks: | |
| l.remove_weight_norm() | |
| remove_weight_norm(self.conv_pre) | |
| remove_weight_norm(self.conv_post) | |
| class AdainResBlk1d(nn.Module): | |
| def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2), | |
| upsample='none', dropout_p=0.0): | |
| super().__init__() | |
| self.actv = actv | |
| self.upsample_type = upsample | |
| self.upsample = UpSample1d(upsample) | |
| self.learned_sc = dim_in != dim_out | |
| self._build_weights(dim_in, dim_out, style_dim) | |
| self.dropout = nn.Dropout(dropout_p) | |
| if upsample == 'none': | |
| self.pool = nn.Identity() | |
| else: | |
| self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1)) | |
| def _build_weights(self, dim_in, dim_out, style_dim): | |
| self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1)) | |
| self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1)) | |
| self.norm1 = AdaIN1d(style_dim, dim_in) | |
| self.norm2 = AdaIN1d(style_dim, dim_out) | |
| if self.learned_sc: | |
| self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False)) | |
| def _shortcut(self, x): | |
| x = self.upsample(x) | |
| if self.learned_sc: | |
| x = self.conv1x1(x) | |
| return x | |
| def _residual(self, x, s): | |
| x = self.norm1(x, s) | |
| x = self.actv(x) | |
| x = self.pool(x) | |
| x = self.conv1(self.dropout(x)) | |
| x = self.norm2(x, s) | |
| x = self.actv(x) | |
| x = self.conv2(self.dropout(x)) | |
| return x | |
| def forward(self, x, s): | |
| out = self._residual(x, s) | |
| out = (out + self._shortcut(x)) / np.sqrt(2) | |
| return out | |
| class UpSample1d(nn.Module): | |
| def __init__(self, layer_type): | |
| super().__init__() | |
| self.layer_type = layer_type | |
| def forward(self, x): | |
| if self.layer_type == 'none': | |
| return x | |
| else: | |
| return F.interpolate(x, scale_factor=2, mode='nearest') | |
| class Decoder(nn.Module): | |
| def __init__(self, dim_in=512, F0_channel=512, style_dim=64, dim_out=80, | |
| resblock_kernel_sizes = [3,7,11], | |
| upsample_rates = [10, 6], | |
| upsample_initial_channel=512, | |
| resblock_dilation_sizes=[[1,3,5], [1,3,5], [1,3,5]], | |
| upsample_kernel_sizes=[20, 12], | |
| gen_istft_n_fft=20, gen_istft_hop_size=5): | |
| super().__init__() | |
| self.decode = nn.ModuleList() | |
| self.encode = AdainResBlk1d(dim_in + 2, 1024, style_dim) | |
| self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim)) | |
| self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim)) | |
| self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim)) | |
| self.decode.append(AdainResBlk1d(1024 + 2 + 64, 512, style_dim, upsample=True)) | |
| self.F0_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1)) | |
| self.N_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1)) | |
| self.asr_res = nn.Sequential( | |
| weight_norm(nn.Conv1d(512, 64, kernel_size=1)), | |
| ) | |
| self.generator = Generator(style_dim, resblock_kernel_sizes, upsample_rates, | |
| upsample_initial_channel, resblock_dilation_sizes, | |
| upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size) | |
| def forward(self, asr, F0_curve, N, s): | |
| F0 = self.F0_conv(F0_curve.unsqueeze(1)) | |
| N = self.N_conv(N.unsqueeze(1)) | |
| x = torch.cat([asr, F0, N], axis=1) | |
| x = self.encode(x, s) | |
| asr_res = self.asr_res(asr) | |
| res = True | |
| for block in self.decode: | |
| if res: | |
| x = torch.cat([x, asr_res, F0, N], axis=1) | |
| x = block(x, s) | |
| if block.upsample_type != "none": | |
| res = False | |
| x = self.generator(x, s, F0_curve) | |
| return x | |