Spaces:
Configuration error
Configuration error
# What this tests? | |
## This tests the litellm support for the openai /generations endpoint | |
import logging | |
import os | |
import sys | |
import traceback | |
sys.path.insert( | |
0, os.path.abspath("../..") | |
) # Adds the parent directory to the system path | |
from dotenv import load_dotenv | |
from openai.types.image import Image | |
from litellm.caching import InMemoryCache | |
logging.basicConfig(level=logging.DEBUG) | |
load_dotenv() | |
import asyncio | |
import os | |
import pytest | |
import litellm | |
import json | |
import tempfile | |
from base_image_generation_test import BaseImageGenTest | |
import logging | |
from litellm._logging import verbose_logger | |
verbose_logger.setLevel(logging.DEBUG) | |
def get_vertex_ai_creds_json() -> dict: | |
# Define the path to the vertex_key.json file | |
print("loading vertex ai credentials") | |
filepath = os.path.dirname(os.path.abspath(__file__)) | |
vertex_key_path = filepath + "/vertex_key.json" | |
# Read the existing content of the file or create an empty dictionary | |
try: | |
with open(vertex_key_path, "r") as file: | |
# Read the file content | |
print("Read vertexai file path") | |
content = file.read() | |
# If the file is empty or not valid JSON, create an empty dictionary | |
if not content or not content.strip(): | |
service_account_key_data = {} | |
else: | |
# Attempt to load the existing JSON content | |
file.seek(0) | |
service_account_key_data = json.load(file) | |
except FileNotFoundError: | |
# If the file doesn't exist, create an empty dictionary | |
service_account_key_data = {} | |
# Update the service_account_key_data with environment variables | |
private_key_id = os.environ.get("VERTEX_AI_PRIVATE_KEY_ID", "") | |
private_key = os.environ.get("VERTEX_AI_PRIVATE_KEY", "") | |
private_key = private_key.replace("\\n", "\n") | |
service_account_key_data["private_key_id"] = private_key_id | |
service_account_key_data["private_key"] = private_key | |
return service_account_key_data | |
def load_vertex_ai_credentials(): | |
# Define the path to the vertex_key.json file | |
print("loading vertex ai credentials") | |
filepath = os.path.dirname(os.path.abspath(__file__)) | |
vertex_key_path = filepath + "/vertex_key.json" | |
# Read the existing content of the file or create an empty dictionary | |
try: | |
with open(vertex_key_path, "r") as file: | |
# Read the file content | |
print("Read vertexai file path") | |
content = file.read() | |
# If the file is empty or not valid JSON, create an empty dictionary | |
if not content or not content.strip(): | |
service_account_key_data = {} | |
else: | |
# Attempt to load the existing JSON content | |
file.seek(0) | |
service_account_key_data = json.load(file) | |
except FileNotFoundError: | |
# If the file doesn't exist, create an empty dictionary | |
service_account_key_data = {} | |
# Update the service_account_key_data with environment variables | |
private_key_id = os.environ.get("VERTEX_AI_PRIVATE_KEY_ID", "") | |
private_key = os.environ.get("VERTEX_AI_PRIVATE_KEY", "") | |
private_key = private_key.replace("\\n", "\n") | |
service_account_key_data["private_key_id"] = private_key_id | |
service_account_key_data["private_key"] = private_key | |
# Create a temporary file | |
with tempfile.NamedTemporaryFile(mode="w+", delete=False) as temp_file: | |
# Write the updated content to the temporary files | |
json.dump(service_account_key_data, temp_file, indent=2) | |
# Export the temporary file as GOOGLE_APPLICATION_CREDENTIALS | |
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = os.path.abspath(temp_file.name) | |
class TestVertexImageGeneration(BaseImageGenTest): | |
def get_base_image_generation_call_args(self) -> dict: | |
# comment this when running locally | |
load_vertex_ai_credentials() | |
litellm.in_memory_llm_clients_cache = InMemoryCache() | |
return { | |
"model": "vertex_ai/imagegeneration@006", | |
"vertex_ai_project": "pathrise-convert-1606954137718", | |
"vertex_ai_location": "us-central1", | |
"n": 1, | |
} | |
class TestBedrockSd3(BaseImageGenTest): | |
def get_base_image_generation_call_args(self) -> dict: | |
litellm.in_memory_llm_clients_cache = InMemoryCache() | |
return {"model": "bedrock/stability.sd3-large-v1:0"} | |
class TestBedrockSd1(BaseImageGenTest): | |
def get_base_image_generation_call_args(self) -> dict: | |
litellm.in_memory_llm_clients_cache = InMemoryCache() | |
return {"model": "bedrock/stability.sd3-large-v1:0"} | |
class TestBedrockNovaCanvasTextToImage(BaseImageGenTest): | |
def get_base_image_generation_call_args(self) -> dict: | |
litellm.in_memory_llm_clients_cache = InMemoryCache() | |
return { | |
"model": "bedrock/amazon.nova-canvas-v1:0", | |
"n": 1, | |
"size": "320x320", | |
"imageGenerationConfig": {"cfgScale": 6.5, "seed": 12}, | |
"taskType": "TEXT_IMAGE", | |
"aws_region_name": "us-east-1", | |
} | |
class TestBedrockNovaCanvasColorGuidedGeneration(BaseImageGenTest): | |
def get_base_image_generation_call_args(self) -> dict: | |
litellm.in_memory_llm_clients_cache = InMemoryCache() | |
return { | |
"model": "bedrock/amazon.nova-canvas-v1:0", | |
"n": 1, | |
"size": "320x320", | |
"imageGenerationConfig": {"cfgScale":6.5,"seed":12}, | |
"taskType": "COLOR_GUIDED_GENERATION", | |
"colorGuidedGenerationParams":{"colors":["#FFFFFF"]}, | |
"aws_region_name": "us-east-1", | |
} | |
class TestOpenAIDalle3(BaseImageGenTest): | |
def get_base_image_generation_call_args(self) -> dict: | |
return {"model": "dall-e-3"} | |
class TestOpenAIGPTImage1(BaseImageGenTest): | |
def get_base_image_generation_call_args(self) -> dict: | |
return {"model": "gpt-image-1"} | |
class TestAzureOpenAIDalle3(BaseImageGenTest): | |
def get_base_image_generation_call_args(self) -> dict: | |
litellm.set_verbose = True | |
return { | |
"model": "azure/dall-e-3-test", | |
"api_version": "2023-12-01-preview", | |
"api_base": os.getenv("AZURE_SWEDEN_API_BASE"), | |
"api_key": os.getenv("AZURE_SWEDEN_API_KEY"), | |
"metadata": { | |
"model_info": { | |
"base_model": "azure/dall-e-3", | |
} | |
}, | |
} | |
def test_image_generation_azure_dall_e_3(): | |
try: | |
litellm.set_verbose = True | |
response = litellm.image_generation( | |
prompt="A cute baby sea otter", | |
model="azure/dall-e-3-test", | |
api_version="2023-12-01-preview", | |
api_base=os.getenv("AZURE_SWEDEN_API_BASE"), | |
api_key=os.getenv("AZURE_SWEDEN_API_KEY"), | |
metadata={ | |
"model_info": { | |
"base_model": "azure/dall-e-3", | |
} | |
}, | |
) | |
print(f"response: {response}") | |
print("response", response._hidden_params) | |
assert len(response.data) > 0 | |
except litellm.InternalServerError as e: | |
pass | |
except litellm.ContentPolicyViolationError: | |
pass # OpenAI randomly raises these errors - skip when they occur | |
except litellm.InternalServerError: | |
pass | |
except litellm.RateLimitError as e: | |
pass | |
except Exception as e: | |
if "Your task failed as a result of our safety system." in str(e): | |
pass | |
if "Connection error" in str(e): | |
pass | |
else: | |
pytest.fail(f"An exception occurred - {str(e)}") | |
# asyncio.run(test_async_image_generation_openai()) | |
async def test_aimage_generation_bedrock_with_optional_params(): | |
try: | |
litellm.in_memory_llm_clients_cache = InMemoryCache() | |
response = await litellm.aimage_generation( | |
prompt="A cute baby sea otter", | |
model="bedrock/stability.stable-diffusion-xl-v1", | |
size="256x256", | |
) | |
print(f"response: {response}") | |
except litellm.RateLimitError as e: | |
pass | |
except litellm.ContentPolicyViolationError: | |
pass # Azure randomly raises these errors skip when they occur | |
except Exception as e: | |
if "Your task failed as a result of our safety system." in str(e): | |
pass | |
else: | |
pytest.fail(f"An exception occurred - {str(e)}") | |