Charlie Li
commited on
Commit
β’
988d509
1
Parent(s):
015a301
pregenerate samples
Browse files- app.py +36 -65
- requirements.txt +1 -0
- utils.py +30 -0
app.py
CHANGED
@@ -4,6 +4,9 @@ import random
|
|
4 |
import datetime
|
5 |
from utils import *
|
6 |
from pathlib import Path
|
|
|
|
|
|
|
7 |
|
8 |
file_url = "https://storage.googleapis.com/derendering_model/derendering_supp.zip"
|
9 |
filename = "derendering_supp.zip"
|
@@ -14,7 +17,7 @@ video_cache_dir.mkdir(exist_ok=True)
|
|
14 |
|
15 |
download_file(file_url, filename)
|
16 |
unzip_file(filename)
|
17 |
-
print("Downloaded and unzipped the
|
18 |
|
19 |
diagram = get_svg_content("derendering_supp/derender_diagram.svg")
|
20 |
org = get_svg_content("org/cor.svg")
|
@@ -51,43 +54,23 @@ sketches_base64_strings = {
|
|
51 |
name: get_base64_encoded_gif(f"sketches/{name}") for name in sketches
|
52 |
}
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
):
|
72 |
-
example_id = name.strip(".png")
|
73 |
-
inkml_file = os.path.join(
|
74 |
-
inkml_path_base, mode, f"{example_id}.inkml"
|
75 |
-
)
|
76 |
-
if not os.path.exists(inkml_file):
|
77 |
-
continue
|
78 |
-
video_filename = f"{Model}_{Dataset}_{mode}_{example_id}.mp4"
|
79 |
-
video_filepath = video_cache_dir / video_filename
|
80 |
-
if not video_filepath.exists():
|
81 |
-
img_path = os.path.join(path, name)
|
82 |
-
img = load_and_pad_img_dir(img_path)
|
83 |
-
ink = inkml_to_ink(inkml_file)
|
84 |
-
plot_ink_to_video(ink, str(video_filepath), input_image=img)
|
85 |
-
|
86 |
-
|
87 |
-
pregenerate_videos()
|
88 |
-
|
89 |
-
|
90 |
-
def demo(Dataset, Model, Output_Format):
|
91 |
if Model == "Small-i":
|
92 |
inkml_path = f"./derendering_supp/small-i_{Dataset}_inkml"
|
93 |
elif Model == "Small-p":
|
@@ -104,8 +87,6 @@ def demo(Dataset, Model, Output_Format):
|
|
104 |
Dataset,
|
105 |
"and model:",
|
106 |
Model,
|
107 |
-
"with output format:",
|
108 |
-
Output_Format,
|
109 |
)
|
110 |
path = f"./derendering_supp/{Dataset}/images_sample"
|
111 |
samples = os.listdir(path)
|
@@ -132,13 +113,10 @@ def demo(Dataset, Model, Output_Format):
|
|
132 |
video_filename = f"{Model}_{Dataset}_{mode}_{example_id}.mp4"
|
133 |
video_filepath = video_cache_dir / video_filename
|
134 |
|
135 |
-
if
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
video_outputs.append("./" + str(video_filepath))
|
140 |
-
else:
|
141 |
-
video_outputs.append(None)
|
142 |
|
143 |
fig, ax = plt.subplots()
|
144 |
ax.axis("off")
|
@@ -152,13 +130,13 @@ def demo(Dataset, Model, Output_Format):
|
|
152 |
return (
|
153 |
img,
|
154 |
text_outputs[0],
|
155 |
-
img_outputs[0],
|
156 |
video_outputs[0],
|
157 |
text_outputs[1],
|
158 |
-
img_outputs[1],
|
159 |
video_outputs[1],
|
160 |
text_outputs[2],
|
161 |
-
img_outputs[2],
|
162 |
video_outputs[2],
|
163 |
)
|
164 |
|
@@ -182,7 +160,6 @@ with gr.Blocks() as app:
|
|
182 |
"""
|
183 |
π This demo highlights the capabilities of Small-i, Small-p, and Large-i across three public datasets (word-level, with 100 random samples each).<br>
|
184 |
π² Select a model variant and dataset (IAM, IMGUR5K, HierText), then hit 'Sample' to view a randomly selected input alongside its corresponding outputs for all three types of inference.<br>
|
185 |
-
πΌοΈ Output options: Image or Image+Video. Opting for images yields quicker results, adding videos offers a dynamic view of the digital ink writing process.<br>
|
186 |
"""
|
187 |
)
|
188 |
with gr.Row():
|
@@ -194,15 +171,12 @@ with gr.Blocks() as app:
|
|
194 |
label="InkSight Model Variant",
|
195 |
value="Small-i",
|
196 |
)
|
197 |
-
output_format = gr.Dropdown(
|
198 |
-
["Image", "Image+Video"], label="Output Format", value="Image"
|
199 |
-
)
|
200 |
im = gr.Image(label="Input Image")
|
201 |
|
202 |
-
with gr.Row():
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
|
207 |
with gr.Row():
|
208 |
d_t_text = gr.Textbox(
|
@@ -210,9 +184,6 @@ with gr.Blocks() as app:
|
|
210 |
)
|
211 |
r_d_text = gr.Textbox(label="Recognition from the model", interactive=False)
|
212 |
vanilla_text = gr.Textbox(label="Vanilla", interactive=False)
|
213 |
-
gr.Markdown(
|
214 |
-
"To visualize the writing process in video, select *Output format* as **Image+Video**."
|
215 |
-
)
|
216 |
with gr.Row():
|
217 |
d_t_vid = gr.Video(
|
218 |
label="Derender with Text (Click to stop/play)", autoplay=True
|
@@ -227,17 +198,17 @@ with gr.Blocks() as app:
|
|
227 |
|
228 |
btn_sub.click(
|
229 |
fn=demo,
|
230 |
-
inputs=[dataset, model
|
231 |
outputs=[
|
232 |
im,
|
233 |
d_t_text,
|
234 |
-
d_t_img,
|
235 |
d_t_vid,
|
236 |
r_d_text,
|
237 |
-
r_d_img,
|
238 |
r_d_vid,
|
239 |
vanilla_text,
|
240 |
-
vanilla_img,
|
241 |
vanilla_vid,
|
242 |
],
|
243 |
)
|
|
|
4 |
import datetime
|
5 |
from utils import *
|
6 |
from pathlib import Path
|
7 |
+
import gdown
|
8 |
+
|
9 |
+
pre_generate = False
|
10 |
|
11 |
file_url = "https://storage.googleapis.com/derendering_model/derendering_supp.zip"
|
12 |
filename = "derendering_supp.zip"
|
|
|
17 |
|
18 |
download_file(file_url, filename)
|
19 |
unzip_file(filename)
|
20 |
+
print("Downloaded and unzipped the inks.")
|
21 |
|
22 |
diagram = get_svg_content("derendering_supp/derender_diagram.svg")
|
23 |
org = get_svg_content("org/cor.svg")
|
|
|
54 |
name: get_base64_encoded_gif(f"sketches/{name}") for name in sketches
|
55 |
}
|
56 |
|
57 |
+
if not pre_generate:
|
58 |
+
print("Downloading pre-generated videos from google drive.")
|
59 |
+
# Download from gdown 1oT6zw1EbWg3lavBMXsL28piULGNmqJzA
|
60 |
+
gdown.download(
|
61 |
+
"https://drive.google.com/uc?id=1oT6zw1EbWg3lavBMXsL28piULGNmqJzA",
|
62 |
+
str(video_cache_dir / "gdrive_file.zip"),
|
63 |
+
quiet=False,
|
64 |
+
)
|
65 |
+
|
66 |
+
# Unzip the file to video_cache_dir
|
67 |
+
unzip_file(str(video_cache_dir / "gdrive_file.zip"))
|
68 |
+
else:
|
69 |
+
pregenerate_videos(video_cache_dir=video_cache_dir)
|
70 |
+
print("Videos cached.")
|
71 |
+
|
72 |
+
|
73 |
+
def demo(Dataset, Model):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
if Model == "Small-i":
|
75 |
inkml_path = f"./derendering_supp/small-i_{Dataset}_inkml"
|
76 |
elif Model == "Small-p":
|
|
|
87 |
Dataset,
|
88 |
"and model:",
|
89 |
Model,
|
|
|
|
|
90 |
)
|
91 |
path = f"./derendering_supp/{Dataset}/images_sample"
|
92 |
samples = os.listdir(path)
|
|
|
113 |
video_filename = f"{Model}_{Dataset}_{mode}_{example_id}.mp4"
|
114 |
video_filepath = video_cache_dir / video_filename
|
115 |
|
116 |
+
if not video_filepath.exists():
|
117 |
+
plot_ink_to_video(ink, str(video_filepath), input_image=img)
|
118 |
+
print("Cached video at:", video_filepath)
|
119 |
+
video_outputs.append("./" + str(video_filepath))
|
|
|
|
|
|
|
120 |
|
121 |
fig, ax = plt.subplots()
|
122 |
ax.axis("off")
|
|
|
130 |
return (
|
131 |
img,
|
132 |
text_outputs[0],
|
133 |
+
# img_outputs[0],
|
134 |
video_outputs[0],
|
135 |
text_outputs[1],
|
136 |
+
# img_outputs[1],
|
137 |
video_outputs[1],
|
138 |
text_outputs[2],
|
139 |
+
# img_outputs[2],
|
140 |
video_outputs[2],
|
141 |
)
|
142 |
|
|
|
160 |
"""
|
161 |
π This demo highlights the capabilities of Small-i, Small-p, and Large-i across three public datasets (word-level, with 100 random samples each).<br>
|
162 |
π² Select a model variant and dataset (IAM, IMGUR5K, HierText), then hit 'Sample' to view a randomly selected input alongside its corresponding outputs for all three types of inference.<br>
|
|
|
163 |
"""
|
164 |
)
|
165 |
with gr.Row():
|
|
|
171 |
label="InkSight Model Variant",
|
172 |
value="Small-i",
|
173 |
)
|
|
|
|
|
|
|
174 |
im = gr.Image(label="Input Image")
|
175 |
|
176 |
+
# with gr.Row():
|
177 |
+
# d_t_img = gr.Image(label="Derender with Text")
|
178 |
+
# r_d_img = gr.Image(label="Recognize and Derender")
|
179 |
+
# vanilla_img = gr.Image(label="Vanilla")
|
180 |
|
181 |
with gr.Row():
|
182 |
d_t_text = gr.Textbox(
|
|
|
184 |
)
|
185 |
r_d_text = gr.Textbox(label="Recognition from the model", interactive=False)
|
186 |
vanilla_text = gr.Textbox(label="Vanilla", interactive=False)
|
|
|
|
|
|
|
187 |
with gr.Row():
|
188 |
d_t_vid = gr.Video(
|
189 |
label="Derender with Text (Click to stop/play)", autoplay=True
|
|
|
198 |
|
199 |
btn_sub.click(
|
200 |
fn=demo,
|
201 |
+
inputs=[dataset, model],
|
202 |
outputs=[
|
203 |
im,
|
204 |
d_t_text,
|
205 |
+
# d_t_img,
|
206 |
d_t_vid,
|
207 |
r_d_text,
|
208 |
+
# r_d_img,
|
209 |
r_d_vid,
|
210 |
vanilla_text,
|
211 |
+
# vanilla_img,
|
212 |
vanilla_vid,
|
213 |
],
|
214 |
)
|
requirements.txt
CHANGED
@@ -3,3 +3,4 @@ numpy
|
|
3 |
matplotlib
|
4 |
Pillow
|
5 |
numpy
|
|
|
|
3 |
matplotlib
|
4 |
Pillow
|
5 |
numpy
|
6 |
+
gdown
|
utils.py
CHANGED
@@ -240,3 +240,33 @@ def parse_inkml_annotations(inkml_file):
|
|
240 |
annotation_dict[annotation_type] = annotation_text
|
241 |
|
242 |
return annotation_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
annotation_dict[annotation_type] = annotation_text
|
241 |
|
242 |
return annotation_dict
|
243 |
+
|
244 |
+
|
245 |
+
def pregenerate_videos(video_cache_dir):
|
246 |
+
datasets = ["IAM", "IMGUR5K", "HierText"]
|
247 |
+
models = ["Small-i", "Large-i", "Small-p"]
|
248 |
+
query_modes = ["d+t", "r+d", "vanilla"]
|
249 |
+
for Dataset in datasets:
|
250 |
+
for Model in models:
|
251 |
+
inkml_path_base = f"./derendering_supp/{Model.lower()}_{Dataset}_inkml"
|
252 |
+
for mode in query_modes:
|
253 |
+
path = f"./derendering_supp/{Dataset}/images_sample"
|
254 |
+
if not os.path.exists(path):
|
255 |
+
continue
|
256 |
+
samples = os.listdir(path)
|
257 |
+
for name in tqdm(
|
258 |
+
samples, desc=f"Generating {Model}-{Dataset}-{mode} videos"
|
259 |
+
):
|
260 |
+
example_id = name.strip(".png")
|
261 |
+
inkml_file = os.path.join(
|
262 |
+
inkml_path_base, mode, f"{example_id}.inkml"
|
263 |
+
)
|
264 |
+
if not os.path.exists(inkml_file):
|
265 |
+
continue
|
266 |
+
video_filename = f"{Model}_{Dataset}_{mode}_{example_id}.mp4"
|
267 |
+
video_filepath = video_cache_dir / video_filename
|
268 |
+
if not video_filepath.exists():
|
269 |
+
img_path = os.path.join(path, name)
|
270 |
+
img = load_and_pad_img_dir(img_path)
|
271 |
+
ink = inkml_to_ink(inkml_file)
|
272 |
+
plot_ink_to_video(ink, str(video_filepath), input_image=img)
|