Spaces:
Sleeping
Sleeping
DereAbdulhameed
commited on
Commit
•
834c01a
1
Parent(s):
1884fcf
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,62 @@
|
|
1 |
-
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
gr.load("models/DereAbdulhameed/updated_cli_2").launch(share=True)
|
|
|
1 |
+
#import gradio as gr
|
2 |
+
import tempfile
|
3 |
+
from pydub import AudioSegment
|
4 |
+
from transformers import pipeline
|
5 |
+
from pyannote.audio import Pipeline
|
6 |
+
|
7 |
+
# Load models dynamically
|
8 |
+
def load_models(model_size):
|
9 |
+
if model_size == "transcriber":
|
10 |
+
model_name = "clinifyemr/yoruba-model-finetuned"
|
11 |
+
transcriber = pipeline("automatic-speech-recognition", model=model_name)
|
12 |
+
return transcriber
|
13 |
+
else:
|
14 |
+
raise ValueError("Model size not supported in this application.")
|
15 |
+
|
16 |
+
# Process the audio file
|
17 |
+
def process_audio(file, num_speakers, model_size):
|
18 |
+
audio_file = AudioSegment.from_file(file.name)
|
19 |
+
transcriber = load_models(model_size)
|
20 |
+
|
21 |
+
# Temporary file setup
|
22 |
+
temp_path = tempfile.mktemp(suffix=".wav")
|
23 |
+
audio_file.export(temp_path, format="wav")
|
24 |
+
|
25 |
+
# Load diarization pipeline
|
26 |
+
diarization_pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization-3.1", use_auth_token="HF_TOKEN")
|
27 |
+
diarization = diarization_pipeline(temp_path, min_speakers=num_speakers, max_speakers=5)
|
28 |
+
|
29 |
+
# Transcribe each segment
|
30 |
+
def transcribe_segment(start, end):
|
31 |
+
segment_audio = audio_file[start * 1000:end * 1000] # pydub works in milliseconds
|
32 |
+
segment_path = tempfile.mktemp(suffix=".wav")
|
33 |
+
segment_audio.export(segment_path, format="wav")
|
34 |
+
transcription = transcriber(segment_path)
|
35 |
+
os.remove(segment_path)
|
36 |
+
return transcription['text']
|
37 |
+
|
38 |
+
transcripts = []
|
39 |
+
for segment, _, speaker in diarization.itertracks(yield_label=True):
|
40 |
+
transcription_text = transcribe_segment(segment.start, segment.end)
|
41 |
+
transcripts.append(f"Speaker {speaker}: {transcription_text}")
|
42 |
+
|
43 |
+
os.remove(temp_path) # Clean up the temporary file
|
44 |
+
return "\n".join(transcripts)
|
45 |
+
|
46 |
+
# Gradio interface setup
|
47 |
+
iface = gr.Interface(
|
48 |
+
fn=process_audio,
|
49 |
+
inputs=[
|
50 |
+
#gr.components.Audio(label="Upload your audio file", type="file"),
|
51 |
+
gr.components.Audio(label="Upload your audio file"),
|
52 |
+
gr.components.Dropdown(choices=[1,2,3,4], label="Number of Speakers"),
|
53 |
+
gr.components.Dropdown(choices=['transcriber'], label="Model Selection") # Assuming only 'transcriber' is relevant here
|
54 |
+
],
|
55 |
+
outputs=gr.Textbox(label="Transcription"),
|
56 |
+
title="Audio Transcription and Speaker Diarization",
|
57 |
+
description="Upload your audio file to transcribe and analyze speaker diarization."
|
58 |
+
)
|
59 |
+
|
60 |
+
if __name__ == "__main__":
|
61 |
+
iface.launch()
|
62 |
|
|