Spaces:
Sleeping
Sleeping
DereAbdulhameed
commited on
Upload 2 files
Browse files- evaluation_module.py +229 -0
- memory.py +147 -0
evaluation_module.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''import torch
|
2 |
+
from sacrebleu import corpus_bleu
|
3 |
+
from rouge_score import rouge_scorer
|
4 |
+
from bert_score import score
|
5 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer, pipeline
|
6 |
+
from transformers import AutoModelForSequenceClassification
|
7 |
+
import nltk
|
8 |
+
from nltk.util import ngrams
|
9 |
+
from nltk.tokenize import word_tokenize
|
10 |
+
from nltk.translate.meteor_score import meteor_score
|
11 |
+
from nltk.translate.chrf_score import sentence_chrf
|
12 |
+
from textstat import flesch_reading_ease, flesch_kincaid_grade
|
13 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
14 |
+
|
15 |
+
class RAGEvaluator:
|
16 |
+
def __init__(self):
|
17 |
+
self.gpt2_model, self.gpt2_tokenizer = self.load_gpt2_model()
|
18 |
+
self.bias_pipeline = pipeline("zero-shot-classification", model="Hate-speech-CNERG/dehatebert-mono-english")
|
19 |
+
|
20 |
+
def load_gpt2_model(self):
|
21 |
+
model = GPT2LMHeadModel.from_pretrained('gpt2')
|
22 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
23 |
+
return model, tokenizer
|
24 |
+
|
25 |
+
def evaluate_bleu_rouge(self, candidates, references):
|
26 |
+
bleu_score = corpus_bleu(candidates, [references]).score
|
27 |
+
scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)
|
28 |
+
rouge_scores = [scorer.score(ref, cand) for ref, cand in zip(references, candidates)]
|
29 |
+
rouge1 = sum([score['rouge1'].fmeasure for score in rouge_scores]) / len(rouge_scores)
|
30 |
+
return bleu_score, rouge1
|
31 |
+
|
32 |
+
def evaluate_bert_score(self, candidates, references):
|
33 |
+
P, R, F1 = score(candidates, references, lang="en", model_type='bert-base-multilingual-cased')
|
34 |
+
return P.mean().item(), R.mean().item(), F1.mean().item()
|
35 |
+
|
36 |
+
def evaluate_perplexity(self, text):
|
37 |
+
encodings = self.gpt2_tokenizer(text, return_tensors='pt')
|
38 |
+
max_length = self.gpt2_model.config.n_positions
|
39 |
+
stride = 512
|
40 |
+
lls = []
|
41 |
+
for i in range(0, encodings.input_ids.size(1), stride):
|
42 |
+
begin_loc = max(i + stride - max_length, 0)
|
43 |
+
end_loc = min(i + stride, encodings.input_ids.size(1))
|
44 |
+
trg_len = end_loc - i
|
45 |
+
input_ids = encodings.input_ids[:, begin_loc:end_loc]
|
46 |
+
target_ids = input_ids.clone()
|
47 |
+
target_ids[:, :-trg_len] = -100
|
48 |
+
with torch.no_grad():
|
49 |
+
outputs = self.gpt2_model(input_ids, labels=target_ids)
|
50 |
+
log_likelihood = outputs[0] * trg_len
|
51 |
+
lls.append(log_likelihood)
|
52 |
+
ppl = torch.exp(torch.stack(lls).sum() / end_loc)
|
53 |
+
return ppl.item()
|
54 |
+
|
55 |
+
def evaluate_diversity(self, texts):
|
56 |
+
all_tokens = [tok for text in texts for tok in text.split()]
|
57 |
+
unique_bigrams = set(ngrams(all_tokens, 2))
|
58 |
+
diversity_score = len(unique_bigrams) / len(all_tokens) if all_tokens else 0
|
59 |
+
return diversity_score
|
60 |
+
|
61 |
+
def evaluate_racial_bias(self, text):
|
62 |
+
results = self.bias_pipeline([text], candidate_labels=["hate speech", "not hate speech"])
|
63 |
+
bias_score = results[0]['scores'][results[0]['labels'].index('hate speech')]
|
64 |
+
return bias_score
|
65 |
+
|
66 |
+
def evaluate_meteor(self, candidates, references):
|
67 |
+
nltk.download('punkt', quiet=True)
|
68 |
+
|
69 |
+
meteor_scores = [
|
70 |
+
meteor_score([word_tokenize(ref)], word_tokenize(cand))
|
71 |
+
for ref, cand in zip(references, candidates)
|
72 |
+
]
|
73 |
+
return sum(meteor_scores) / len(meteor_scores)
|
74 |
+
|
75 |
+
def evaluate_chrf(self, candidates, references):
|
76 |
+
chrf_scores = [sentence_chrf(ref, cand) for ref, cand in zip(references, candidates)]
|
77 |
+
return sum(chrf_scores) / len(chrf_scores)
|
78 |
+
|
79 |
+
def evaluate_readability(self, text):
|
80 |
+
flesch_ease = flesch_reading_ease(text)
|
81 |
+
flesch_grade = flesch_kincaid_grade(text)
|
82 |
+
return flesch_ease, flesch_grade
|
83 |
+
|
84 |
+
def evaluate_all(self, response, reference):
|
85 |
+
candidates = [response]
|
86 |
+
references = [reference]
|
87 |
+
bleu, rouge1 = self.evaluate_bleu_rouge(candidates, references)
|
88 |
+
bert_p, bert_r, bert_f1 = self.evaluate_bert_score(candidates, references)
|
89 |
+
perplexity = self.evaluate_perplexity(response)
|
90 |
+
diversity = self.evaluate_diversity(candidates)
|
91 |
+
racial_bias = self.evaluate_racial_bias(response)
|
92 |
+
meteor = self.evaluate_meteor(candidates, references)
|
93 |
+
chrf = self.evaluate_chrf(candidates, references)
|
94 |
+
flesch_ease, flesch_grade = self.evaluate_readability(response)
|
95 |
+
return {
|
96 |
+
"BLEU": bleu,
|
97 |
+
"ROUGE-1": rouge1,
|
98 |
+
"BERT P": bert_p,
|
99 |
+
"BERT R": bert_r,
|
100 |
+
"BERT F1": bert_f1,
|
101 |
+
"Perplexity": perplexity,
|
102 |
+
"Diversity": diversity,
|
103 |
+
"Racial Bias": racial_bias,
|
104 |
+
"METEOR": meteor,
|
105 |
+
"CHRF": chrf,
|
106 |
+
"Flesch Reading Ease": flesch_ease,
|
107 |
+
"Flesch-Kincaid Grade": flesch_grade,
|
108 |
+
}'''
|
109 |
+
|
110 |
+
|
111 |
+
import torch
|
112 |
+
from sacrebleu import corpus_bleu
|
113 |
+
from rouge_score import rouge_scorer
|
114 |
+
from bert_score import score
|
115 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer, pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
116 |
+
import nltk
|
117 |
+
from nltk.util import ngrams
|
118 |
+
from nltk.tokenize import word_tokenize
|
119 |
+
from nltk.translate.meteor_score import meteor_score
|
120 |
+
from nltk.translate.chrf_score import sentence_chrf
|
121 |
+
from textstat import flesch_reading_ease, flesch_kincaid_grade
|
122 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
123 |
+
|
124 |
+
class RAGEvaluator:
|
125 |
+
def __init__(self):
|
126 |
+
self.gpt2_model, self.gpt2_tokenizer = self.load_gpt2_model()
|
127 |
+
self.bias_pipeline = self.load_bias_model()
|
128 |
+
|
129 |
+
def load_gpt2_model(self):
|
130 |
+
model = GPT2LMHeadModel.from_pretrained('gpt2')
|
131 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
132 |
+
return model, tokenizer
|
133 |
+
|
134 |
+
def load_bias_model(self):
|
135 |
+
# Load the model for zero-shot classification
|
136 |
+
model = AutoModelForSequenceClassification.from_pretrained('Hate-speech-CNERG/dehatebert-mono-english')
|
137 |
+
tokenizer = AutoTokenizer.from_pretrained('Hate-speech-CNERG/dehatebert-mono-english')
|
138 |
+
|
139 |
+
# Define label2id mapping for entailment and contradiction
|
140 |
+
model.config.label2id = {'not hate speech': 0, 'hate speech': 1}
|
141 |
+
|
142 |
+
# Return pipeline with the proper model and tokenizer
|
143 |
+
return pipeline("zero-shot-classification", model=model, tokenizer=tokenizer)
|
144 |
+
|
145 |
+
def evaluate_bleu_rouge(self, candidates, references):
|
146 |
+
bleu_score = corpus_bleu(candidates, [references]).score
|
147 |
+
scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)
|
148 |
+
rouge_scores = [scorer.score(ref, cand) for ref, cand in zip(references, candidates)]
|
149 |
+
rouge1 = sum([score['rouge1'].fmeasure for score in rouge_scores]) / len(rouge_scores)
|
150 |
+
return bleu_score, rouge1
|
151 |
+
|
152 |
+
def evaluate_bert_score(self, candidates, references):
|
153 |
+
P, R, F1 = score(candidates, references, lang="en", model_type='bert-base-multilingual-cased')
|
154 |
+
return P.mean().item(), R.mean().item(), F1.mean().item()
|
155 |
+
|
156 |
+
def evaluate_perplexity(self, text):
|
157 |
+
encodings = self.gpt2_tokenizer(text, return_tensors='pt')
|
158 |
+
max_length = self.gpt2_model.config.n_positions
|
159 |
+
stride = 512
|
160 |
+
lls = []
|
161 |
+
for i in range(0, encodings.input_ids.size(1), stride):
|
162 |
+
begin_loc = max(i + stride - max_length, 0)
|
163 |
+
end_loc = min(i + stride, encodings.input_ids.size(1))
|
164 |
+
trg_len = end_loc - i
|
165 |
+
input_ids = encodings.input_ids[:, begin_loc:end_loc]
|
166 |
+
target_ids = input_ids.clone()
|
167 |
+
target_ids[:, :-trg_len] = -100
|
168 |
+
with torch.no_grad():
|
169 |
+
outputs = self.gpt2_model(input_ids, labels=target_ids)
|
170 |
+
log_likelihood = outputs[0] * trg_len
|
171 |
+
lls.append(log_likelihood)
|
172 |
+
ppl = torch.exp(torch.stack(lls).sum() / end_loc)
|
173 |
+
return ppl.item()
|
174 |
+
|
175 |
+
def evaluate_diversity(self, texts):
|
176 |
+
all_tokens = [tok for text in texts for tok in text.split()]
|
177 |
+
unique_bigrams = set(ngrams(all_tokens, 2))
|
178 |
+
diversity_score = len(unique_bigrams) / len(all_tokens) if all_tokens else 0
|
179 |
+
return diversity_score
|
180 |
+
|
181 |
+
def evaluate_racial_bias(self, text):
|
182 |
+
results = self.bias_pipeline([text], candidate_labels=["hate speech", "not hate speech"])
|
183 |
+
bias_score = results[0]['scores'][results[0]['labels'].index('hate speech')]
|
184 |
+
return bias_score
|
185 |
+
|
186 |
+
def evaluate_meteor(self, candidates, references):
|
187 |
+
nltk.download('punkt', quiet=True)
|
188 |
+
|
189 |
+
meteor_scores = [
|
190 |
+
meteor_score([word_tokenize(ref)], word_tokenize(cand))
|
191 |
+
for ref, cand in zip(references, candidates)
|
192 |
+
]
|
193 |
+
return sum(meteor_scores) / len(meteor_scores)
|
194 |
+
|
195 |
+
def evaluate_chrf(self, candidates, references):
|
196 |
+
chrf_scores = [sentence_chrf(ref, cand) for ref, cand in zip(references, candidates)]
|
197 |
+
return sum(chrf_scores) / len(chrf_scores)
|
198 |
+
|
199 |
+
def evaluate_readability(self, text):
|
200 |
+
flesch_ease = flesch_reading_ease(text)
|
201 |
+
flesch_grade = flesch_kincaid_grade(text)
|
202 |
+
return flesch_ease, flesch_grade
|
203 |
+
|
204 |
+
def evaluate_all(self, response, reference):
|
205 |
+
candidates = [response]
|
206 |
+
references = [reference]
|
207 |
+
bleu, rouge1 = self.evaluate_bleu_rouge(candidates, references)
|
208 |
+
bert_p, bert_r, bert_f1 = self.evaluate_bert_score(candidates, references)
|
209 |
+
perplexity = self.evaluate_perplexity(response)
|
210 |
+
diversity = self.evaluate_diversity(candidates)
|
211 |
+
racial_bias = self.evaluate_racial_bias(response)
|
212 |
+
meteor = self.evaluate_meteor(candidates, references)
|
213 |
+
chrf = self.evaluate_chrf(candidates, references)
|
214 |
+
flesch_ease, flesch_grade = self.evaluate_readability(response)
|
215 |
+
return {
|
216 |
+
"BLEU": bleu,
|
217 |
+
"ROUGE-1": rouge1,
|
218 |
+
"BERT P": bert_p,
|
219 |
+
"BERT R": bert_r,
|
220 |
+
"BERT F1": bert_f1,
|
221 |
+
"Perplexity": perplexity,
|
222 |
+
"Diversity": diversity,
|
223 |
+
"Racial Bias": racial_bias,
|
224 |
+
"METEOR": meteor,
|
225 |
+
"CHRF": chrf,
|
226 |
+
"Flesch Reading Ease": flesch_ease,
|
227 |
+
"Flesch-Kincaid Grade": flesch_grade,
|
228 |
+
}
|
229 |
+
|
memory.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import openai
|
3 |
+
from openai import OpenAI
|
4 |
+
from brain import get_index_for_documents
|
5 |
+
from langchain.chains import RetrievalQA
|
6 |
+
from langchain_community.chat_models import ChatOpenAI
|
7 |
+
from langchain_community.embeddings import OpenAIEmbeddings
|
8 |
+
from langchain_community.vectorstores import FAISS
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
import os
|
11 |
+
from evaluation_module import RAGEvaluator
|
12 |
+
|
13 |
+
# Set the title for the Streamlit app
|
14 |
+
st.title("DocuChat with Evaluation")
|
15 |
+
|
16 |
+
# Set up the OpenAI client
|
17 |
+
client = OpenAI()
|
18 |
+
load_dotenv() # Load variables from .env
|
19 |
+
openai.api_key = os.getenv("OPENAI_API_KEY")
|
20 |
+
|
21 |
+
# Initialize evaluator
|
22 |
+
evaluator = RAGEvaluator()
|
23 |
+
|
24 |
+
# Function to create vector database from different file types
|
25 |
+
@st.cache_resource
|
26 |
+
def create_vectordb(files, filenames, raw_texts):
|
27 |
+
with st.spinner("Creating vector database..."):
|
28 |
+
vectordb = get_index_for_documents(
|
29 |
+
[file.getvalue() for file in files if file.type == "application/pdf"],
|
30 |
+
filenames,
|
31 |
+
[raw_text for raw_text in raw_texts.splitlines() if raw_text.strip()],
|
32 |
+
openai.api_key
|
33 |
+
)
|
34 |
+
return vectordb
|
35 |
+
|
36 |
+
# Upload files using Streamlit's file uploader
|
37 |
+
uploaded_files = st.file_uploader("Upload your documents (PDF or TXT)", type=["pdf", "txt"], accept_multiple_files=True, label_visibility="hidden")
|
38 |
+
|
39 |
+
# Text area for raw text input
|
40 |
+
raw_text = st.text_area("Or enter your raw text here:", height=150)
|
41 |
+
|
42 |
+
# If files are uploaded or raw text is provided, create the vectordb and store it in the session state
|
43 |
+
if uploaded_files or raw_text:
|
44 |
+
file_names = [file.name for file in uploaded_files] if uploaded_files else []
|
45 |
+
st.session_state["vectordb"] = create_vectordb(uploaded_files, file_names, raw_text)
|
46 |
+
|
47 |
+
# Define the template for the chatbot prompt
|
48 |
+
prompt_template = """
|
49 |
+
You are a helpful Assistant who answers to users questions based on multiple contexts given to you.
|
50 |
+
|
51 |
+
Keep your answer short and to the point.
|
52 |
+
|
53 |
+
The evidence is the context of the document extract with metadata.
|
54 |
+
|
55 |
+
Carefully focus on the metadata, especially 'filename' and 'page' whenever answering.
|
56 |
+
|
57 |
+
Make sure to add filename and page number at the end of the sentence you are citing to.
|
58 |
+
|
59 |
+
Also be able to give a summary based on the document extract given to you, but do not hallucinate.
|
60 |
+
|
61 |
+
Reply "Not applicable" if text is irrelevant.
|
62 |
+
|
63 |
+
The document content is:
|
64 |
+
{doc_extract}
|
65 |
+
"""
|
66 |
+
|
67 |
+
# Get the current prompt from the session state or set a default value
|
68 |
+
prompt = st.session_state.get("prompt", [{"role": "system", "content": "none"}])
|
69 |
+
|
70 |
+
# Display previous chat messages
|
71 |
+
for message in prompt:
|
72 |
+
if message["role"] != "system":
|
73 |
+
with st.chat_message(message["role"]):
|
74 |
+
st.write(message["content"])
|
75 |
+
|
76 |
+
# Get the user's question using Streamlit's chat input
|
77 |
+
question = st.chat_input("Ask anything")
|
78 |
+
|
79 |
+
# Handle the user's question
|
80 |
+
if question:
|
81 |
+
vectordb = st.session_state.get("vectordb", None)
|
82 |
+
if not vectordb:
|
83 |
+
with st.chat_message("assistant"):
|
84 |
+
st.write("You need to provide a PDF, TXT file, or raw text.")
|
85 |
+
st.stop()
|
86 |
+
|
87 |
+
# Search the vectordb for similar content to the user's question
|
88 |
+
search_results = vectordb.similarity_search(question, k=3)
|
89 |
+
doc_extract = "\n".join([result.page_content for result in search_results])
|
90 |
+
|
91 |
+
# Update the prompt with the document extract
|
92 |
+
prompt[0] = {
|
93 |
+
"role": "system",
|
94 |
+
"content": prompt_template.format(doc_extract=doc_extract),
|
95 |
+
}
|
96 |
+
|
97 |
+
# Add the user's question to the prompt and display it
|
98 |
+
prompt.append({"role": "user", "content": question})
|
99 |
+
with st.chat_message("user"):
|
100 |
+
st.write(question)
|
101 |
+
|
102 |
+
# Display an empty assistant message while waiting for the response
|
103 |
+
with st.chat_message("assistant"):
|
104 |
+
botmsg = st.empty()
|
105 |
+
|
106 |
+
# Call ChatGPT with streaming and display the response as it comes
|
107 |
+
response = []
|
108 |
+
result = ""
|
109 |
+
for chunk in client.chat.completions.create(
|
110 |
+
model="gpt-3.5-turbo", messages=prompt, stream=True
|
111 |
+
):
|
112 |
+
text = chunk.choices[0].delta.content
|
113 |
+
if text is not None:
|
114 |
+
response.append(text)
|
115 |
+
result = "".join(response).strip()
|
116 |
+
botmsg.write(result)
|
117 |
+
|
118 |
+
# Add the assistant's response to the prompt
|
119 |
+
prompt.append({"role": "assistant", "content": result})
|
120 |
+
|
121 |
+
# Store the updated prompt in the session state
|
122 |
+
st.session_state["prompt"] = prompt
|
123 |
+
|
124 |
+
# Evaluation Section
|
125 |
+
st.write("## Evaluation Results")
|
126 |
+
if st.button("Evaluate Response"):
|
127 |
+
if doc_extract and result:
|
128 |
+
# Perform evaluation
|
129 |
+
metrics = evaluator.evaluate_all(result, doc_extract)
|
130 |
+
|
131 |
+
# Display metrics with explanations
|
132 |
+
st.write(f"**BLEU Score**: {metrics['BLEU']:.2f}")
|
133 |
+
st.write("BLEU measures the overlap between the generated output and reference text based on n-grams. Range: 0-100. Higher scores indicate better match.")
|
134 |
+
|
135 |
+
st.write(f"**ROUGE-1 Score**: {metrics['ROUGE-1']:.2f}")
|
136 |
+
st.write("ROUGE-1 measures the overlap of unigrams between the generated output and reference text. Range: 0-1. Higher scores indicate better match.")
|
137 |
+
|
138 |
+
st.write(f"**BERT Precision**: {metrics['BERT P']:.2f}")
|
139 |
+
st.write(f"**BERT Recall**: {metrics['BERT R']:.2f}")
|
140 |
+
st.write(f"**BERT F1 Score**: {metrics['BERT F1']:.2f}")
|
141 |
+
st.write("BERTScore evaluates the semantic similarity between the generated output and reference text using BERT embeddings. Range: 0-1. Higher scores indicate better semantic similarity.")
|
142 |
+
|
143 |
+
st.write(f"**Perplexity**: {metrics['Perplexity']:.2f}")
|
144 |
+
st.write("Perplexity measures how well a language model predicts the text. Range: 1 to ∞. Lower values indicate better fluency and coherence.")
|
145 |
+
|
146 |
+
st.write(f"**Diversity**: {metrics['Diversity']:.2f}")
|
147 |
+
st.write("Diversity measures the uniqueness of bigrams in the generated output. Range: 0-1. Higher values indicate more diverse and varied output.")
|