DenisT commited on
Commit
b902873
·
1 Parent(s): e2a5258
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitignore +168 -0
  2. Dockerfile +16 -2
  3. README.md +76 -3
  4. assets/MangaTranslator.png +0 -0
  5. fonts/GL-NovantiquaMinamoto.ttf +3 -0
  6. fonts/mangat.ttf +3 -0
  7. model_creation/011.jpg +0 -0
  8. model_creation/main.ipynb +0 -0
  9. model_creation/runs/detect/train5/F1_curve.png +0 -0
  10. model_creation/runs/detect/train5/PR_curve.png +0 -0
  11. model_creation/runs/detect/train5/P_curve.png +0 -0
  12. model_creation/runs/detect/train5/R_curve.png +0 -0
  13. model_creation/runs/detect/train5/args.yaml +106 -0
  14. model_creation/runs/detect/train5/confusion_matrix.png +0 -0
  15. model_creation/runs/detect/train5/confusion_matrix_normalized.png +0 -0
  16. model_creation/runs/detect/train5/events.out.tfevents.1716832099.517a5a4e3ae1.2051.0 +3 -0
  17. model_creation/runs/detect/train5/labels.jpg +0 -0
  18. model_creation/runs/detect/train5/labels_correlogram.jpg +0 -0
  19. model_creation/runs/detect/train5/results.csv +6 -0
  20. model_creation/runs/detect/train5/results.png +0 -0
  21. model_creation/runs/detect/train5/train_batch0.jpg +0 -0
  22. model_creation/runs/detect/train5/train_batch1.jpg +0 -0
  23. model_creation/runs/detect/train5/train_batch2.jpg +0 -0
  24. model_creation/runs/detect/train5/val_batch0_labels.jpg +0 -0
  25. model_creation/runs/detect/train5/val_batch0_pred.jpg +0 -0
  26. model_creation/runs/detect/train5/val_batch1_labels.jpg +0 -0
  27. model_creation/runs/detect/train5/val_batch1_pred.jpg +0 -0
  28. model_creation/runs/detect/train5/val_batch2_labels.jpg +0 -0
  29. model_creation/runs/detect/train5/val_batch2_pred.jpg +0 -0
  30. model_creation/runs/detect/train5/weights/best.pt +3 -0
  31. model_creation/runs/detect/train5/weights/last.pt +3 -0
  32. model_creation/runs/detect/train53/F1_curve.png +0 -0
  33. model_creation/runs/detect/train53/PR_curve.png +0 -0
  34. model_creation/runs/detect/train53/P_curve.png +0 -0
  35. model_creation/runs/detect/train53/R_curve.png +0 -0
  36. model_creation/runs/detect/train53/confusion_matrix.png +0 -0
  37. model_creation/runs/detect/train53/confusion_matrix_normalized.png +0 -0
  38. model_creation/runs/detect/train53/val_batch0_labels.jpg +0 -0
  39. model_creation/runs/detect/train53/val_batch0_pred.jpg +0 -0
  40. model_creation/runs/detect/train53/val_batch1_labels.jpg +0 -0
  41. model_creation/runs/detect/train53/val_batch1_pred.jpg +0 -0
  42. model_creation/runs/detect/train53/val_batch2_labels.jpg +0 -0
  43. model_creation/runs/detect/train53/val_batch2_pred.jpg +0 -0
  44. model_creation/translated_image.png +0 -0
  45. model_creation/yolov8s.pt +3 -0
  46. requirements.txt +9 -0
  47. server.py +83 -0
  48. static/index.js +57 -0
  49. static/styles.css +105 -0
  50. templates/index.html +48 -0
.gitignore ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ share/python-wheels/
24
+ *.egg-info/
25
+ .installed.cfg
26
+ *.egg
27
+ MANIFEST
28
+
29
+ # PyInstaller
30
+ # Usually these files are written by a python script from a template
31
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
+ *.manifest
33
+ *.spec
34
+
35
+ # Installer logs
36
+ pip-log.txt
37
+ pip-delete-this-directory.txt
38
+
39
+ # Unit test / coverage reports
40
+ htmlcov/
41
+ .tox/
42
+ .nox/
43
+ .coverage
44
+ .coverage.*
45
+ .cache
46
+ nosetests.xml
47
+ coverage.xml
48
+ *.cover
49
+ *.py,cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+ cover/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ .pybuilder/
76
+ target/
77
+
78
+ # Jupyter Notebook
79
+ .ipynb_checkpoints
80
+
81
+ # IPython
82
+ profile_default/
83
+ ipython_config.py
84
+
85
+ # pyenv
86
+ # For a library or package, you might want to ignore these files since the code is
87
+ # intended to run in multiple environments; otherwise, check them in:
88
+ # .python-version
89
+
90
+ # pipenv
91
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
+ # install all needed dependencies.
95
+ #Pipfile.lock
96
+
97
+ # poetry
98
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
100
+ # commonly ignored for libraries.
101
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102
+ #poetry.lock
103
+
104
+ # pdm
105
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106
+ #pdm.lock
107
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108
+ # in version control.
109
+ # https://pdm.fming.dev/latest/usage/project/#working-with-version-control
110
+ .pdm.toml
111
+ .pdm-python
112
+ .pdm-build/
113
+
114
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
115
+ __pypackages__/
116
+
117
+ # Celery stuff
118
+ celerybeat-schedule
119
+ celerybeat.pid
120
+
121
+ # SageMath parsed files
122
+ *.sage.py
123
+
124
+ # Environments
125
+ .env
126
+ .venv
127
+ env/
128
+ venv/
129
+ ENV/
130
+ env.bak/
131
+ venv.bak/
132
+
133
+ # Spyder project settings
134
+ .spyderproject
135
+ .spyproject
136
+
137
+ # Rope project settings
138
+ .ropeproject
139
+
140
+ # mkdocs documentation
141
+ /site
142
+
143
+ # mypy
144
+ .mypy_cache/
145
+ .dmypy.json
146
+ dmypy.json
147
+
148
+ # Pyre type checker
149
+ .pyre/
150
+
151
+ # pytype static type analyzer
152
+ .pytype/
153
+
154
+ # Cython debug symbols
155
+ cython_debug/
156
+
157
+ # PyCharm
158
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
159
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
160
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
161
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
162
+ #.idea/
163
+
164
+ Pipfile
165
+ Pipfile.lock
166
+
167
+ data/
168
+ bounding_box_images/
Dockerfile CHANGED
@@ -1,7 +1,7 @@
1
  # read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
2
  # you will also find guides on how best to write your Dockerfile
3
 
4
- FROM python:3.9
5
 
6
  WORKDIR /code
7
 
@@ -9,6 +9,20 @@ COPY ./requirements.txt /code/requirements.txt
9
 
10
  RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
11
 
 
 
 
12
  COPY . .
13
 
14
- CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "7860"]
 
 
 
 
 
 
 
 
 
 
 
 
1
  # read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
2
  # you will also find guides on how best to write your Dockerfile
3
 
4
+ FROM python:3.11
5
 
6
  WORKDIR /code
7
 
 
9
 
10
  RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
11
 
12
+ # Install espeak
13
+ RUN apt-get install -y espeak
14
+
15
  COPY . .
16
 
17
+ RUN useradd -m -u 1000 user
18
+
19
+ USER user
20
+
21
+ ENV HOME=/home/user \
22
+ PATH=/home/user/.local/bin:$PATH
23
+
24
+ WORKDIR $HOME/app
25
+
26
+ COPY --chown=user . $HOME/app
27
+
28
+ CMD ["uvicorn", "server:app", "--host", "0.0.0.0", "--port", "7860"]
README.md CHANGED
@@ -1,10 +1,83 @@
1
  ---
2
  title: Manga Translator
3
- emoji: 🌖
4
- colorFrom: red
5
- colorTo: red
6
  sdk: docker
7
  pinned: false
8
  ---
9
 
10
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  title: Manga Translator
3
+ emoji: 📖
4
+ colorFrom: pink
5
+ colorTo: yellow
6
  sdk: docker
7
  pinned: false
8
  ---
9
 
10
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
11
+
12
+ # Manga Translator
13
+
14
+ - [Manga Translator](#manga-translator)
15
+ - [Introduction](#introduction)
16
+ - [Approach](#approach)
17
+ - [Data Collection](#data-collection)
18
+ - [Yolov8](#yolov8)
19
+ - [Manga-ocr](#manga-ocr)
20
+ - [Deep-translator](#deep-translator)
21
+ - [Server](#server)
22
+ - [Demo](#demo)
23
+
24
+ ## Introduction
25
+
26
+ I love reading manga, and I can't wait for the next chapter of my favorite manga to be released. However, the newest chapters are usually in Japanese, and they are translated to English after some time. I want to read the newest chapters as soon as possible, so I decided to build a manga translator that can translate Japanese manga to English.
27
+
28
+ ## Approach
29
+
30
+ I want to translate the text in the manga images from Japanese to English. I will first need to know where these speech bubbles are on the image. For this I will use `Yolov8` to detect the speech bubbles. Once I have the speech bubbles, I will use `manga-ocr` to extract the text from the speech bubbles. Finally, I will use `deep-translator` to translate the text from Japanese to English.
31
+
32
+ ![Manga Translator](./assets/MangaTranslator.png)
33
+
34
+ ### Data Collection
35
+
36
+ This [dataset](https://universe.roboflow.com/speechbubbledetection-y9yz3/bubble-detection-gbjon/dataset/2#) contains over 8500 images of manga pages together with their annotations from Roboflow. I will use this dataset to train `Yolov8` to detect the speech bubbles in the manga images. To use this dataset with Yolov8, I will need to convert the annotations to the YOLO format, which is a text file containing the class label and the bounding box coordinates of the object in the image.
37
+
38
+ This dataset is over 1.7GB in size, so I will need to download it to my local machine. The rest of the code should be run after the dataset has been downloaded and extracted in this directory.
39
+
40
+ The dataset contains mostly English manga, but that is fine since I am only interested in the speech bubbles.
41
+
42
+ ### Yolov8
43
+
44
+ `Yolov8` is a state-of-the-art, real-time object detection system [that I've used in the past before](https://github.com/Detopall/parking-lot-prediction). I will use `Yolov8` to detect the speech bubbles in the manga images.
45
+
46
+ ### Manga-ocr
47
+
48
+ Optical character recognition for Japanese text, with the main focus being Japanese manga. This Python package is built and trained specifically for extracting text from manga images. This makes it perfect for extracting text from the speech bubbles in the manga images.
49
+
50
+ ### Deep-translator
51
+
52
+ `Deep-translator` is a Python package that uses the Google Translate API to translate text from one language to another. I will use `deep-translator` to translate the text extracted from the manga images from Japanese to English.
53
+
54
+ ## Server
55
+
56
+ I created a simple server and client using FastAPI. The server will receive the manga image from the client, detect the speech bubbles, extract the text from the speech bubbles, and translate the text from Japanese to English. The server will then send the translated text back to the client.
57
+
58
+ To run the server, you will need to install the required packages. You can do this by running the following command:
59
+
60
+ ```bash
61
+ pip install -r requirements.txt
62
+ ```
63
+
64
+ You can then start the server by running the following command:
65
+
66
+ ```bash
67
+ python app.py
68
+ ```
69
+
70
+ The server will start running on `http://localhost:8000`. You can then send a POST request to `http://localhost:8000/predict` with the manga image as the request body.
71
+
72
+ ```json
73
+ POST /predict
74
+ {
75
+ "image": "base64_encoded_image"
76
+ }
77
+ ```
78
+
79
+ ## Demo
80
+
81
+ The following video is a screen recording of the client sending a manga image to the server, and the server detecting the speech bubbles, extracting the text, and translating the text from Japanese to English.
82
+
83
+ [![Manga Translator](./assets/MangaTranslator.png)](https://www.youtube.com/watch?v=aEOpx1_CUGI)
assets/MangaTranslator.png ADDED
fonts/GL-NovantiquaMinamoto.ttf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6dd6f8754f1e5ffd3c21a514c15b6bcb0cd5893a4cb60fcd51f795eb9167d4ce
3
+ size 10225352
fonts/mangat.ttf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7de5680ca9a17be79d6b311c1010865e4352da94f3512f6f1738111381a59a26
3
+ size 29964
model_creation/011.jpg ADDED
model_creation/main.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
model_creation/runs/detect/train5/F1_curve.png ADDED
model_creation/runs/detect/train5/PR_curve.png ADDED
model_creation/runs/detect/train5/P_curve.png ADDED
model_creation/runs/detect/train5/R_curve.png ADDED
model_creation/runs/detect/train5/args.yaml ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: detect
2
+ mode: train
3
+ model: yolov8s.pt
4
+ data: /content/data/data.yaml
5
+ epochs: 5
6
+ time: null
7
+ patience: 100
8
+ batch: 16
9
+ imgsz: 640
10
+ save: true
11
+ save_period: -1
12
+ cache: false
13
+ device: null
14
+ workers: 8
15
+ project: null
16
+ name: train5
17
+ exist_ok: false
18
+ pretrained: true
19
+ optimizer: auto
20
+ verbose: true
21
+ seed: 0
22
+ deterministic: true
23
+ single_cls: false
24
+ rect: false
25
+ cos_lr: false
26
+ close_mosaic: 10
27
+ resume: false
28
+ amp: true
29
+ fraction: 1.0
30
+ profile: false
31
+ freeze: null
32
+ multi_scale: false
33
+ overlap_mask: true
34
+ mask_ratio: 4
35
+ dropout: 0.0
36
+ val: true
37
+ split: val
38
+ save_json: false
39
+ save_hybrid: false
40
+ conf: null
41
+ iou: 0.7
42
+ max_det: 300
43
+ half: false
44
+ dnn: false
45
+ plots: true
46
+ source: null
47
+ vid_stride: 1
48
+ stream_buffer: false
49
+ visualize: false
50
+ augment: false
51
+ agnostic_nms: false
52
+ classes: null
53
+ retina_masks: false
54
+ embed: null
55
+ show: false
56
+ save_frames: false
57
+ save_txt: false
58
+ save_conf: false
59
+ save_crop: false
60
+ show_labels: true
61
+ show_conf: true
62
+ show_boxes: true
63
+ line_width: null
64
+ format: torchscript
65
+ keras: false
66
+ optimize: false
67
+ int8: false
68
+ dynamic: false
69
+ simplify: false
70
+ opset: null
71
+ workspace: 4
72
+ nms: false
73
+ lr0: 0.01
74
+ lrf: 0.01
75
+ momentum: 0.937
76
+ weight_decay: 0.0005
77
+ warmup_epochs: 3.0
78
+ warmup_momentum: 0.8
79
+ warmup_bias_lr: 0.1
80
+ box: 7.5
81
+ cls: 0.5
82
+ dfl: 1.5
83
+ pose: 12.0
84
+ kobj: 1.0
85
+ label_smoothing: 0.0
86
+ nbs: 64
87
+ hsv_h: 0.015
88
+ hsv_s: 0.7
89
+ hsv_v: 0.4
90
+ degrees: 0.0
91
+ translate: 0.1
92
+ scale: 0.5
93
+ shear: 0.0
94
+ perspective: 0.0
95
+ flipud: 0.0
96
+ fliplr: 0.5
97
+ bgr: 0.0
98
+ mosaic: 1.0
99
+ mixup: 0.0
100
+ copy_paste: 0.0
101
+ auto_augment: randaugment
102
+ erasing: 0.4
103
+ crop_fraction: 1.0
104
+ cfg: null
105
+ tracker: botsort.yaml
106
+ save_dir: runs/detect/train5
model_creation/runs/detect/train5/confusion_matrix.png ADDED
model_creation/runs/detect/train5/confusion_matrix_normalized.png ADDED
model_creation/runs/detect/train5/events.out.tfevents.1716832099.517a5a4e3ae1.2051.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71ffd4980af6bc63e2b5261b3bef21512ea589d084d037f2af7f528c267129cb
3
+ size 189152
model_creation/runs/detect/train5/labels.jpg ADDED
model_creation/runs/detect/train5/labels_correlogram.jpg ADDED
model_creation/runs/detect/train5/results.csv ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ epoch, train/box_loss, train/cls_loss, train/dfl_loss, metrics/precision(B), metrics/recall(B), metrics/mAP50(B), metrics/mAP50-95(B), val/box_loss, val/cls_loss, val/dfl_loss, lr/pg0, lr/pg1, lr/pg2
2
+ 1, 0.89006, 0.67441, 1.0306, 0.82238, 0.8392, 0.85022, 0.60429, 0.70056, 0.38437, 0.96738, 0.00055456, 0.00055456, 0.00055456
3
+ 2, 0.84925, 0.51813, 1.0105, 0.82923, 0.89142, 0.86099, 0.61496, 0.70351, 0.35903, 0.97034, 0.0008904, 0.0008904, 0.0008904
4
+ 3, 0.8267, 0.48975, 1.0046, 0.74549, 0.82015, 0.79615, 0.60803, 0.6697, 0.34986, 0.95315, 0.0010062, 0.0010062, 0.0010062
5
+ 4, 0.7923, 0.44796, 0.98622, 0.8072, 0.93015, 0.88952, 0.6569, 0.64922, 0.31112, 0.9423, 0.0006768, 0.0006768, 0.0006768
6
+ 5, 0.75979, 0.41155, 0.97252, 0.87983, 0.9133, 0.91496, 0.68457, 0.65444, 0.29384, 0.93771, 0.00034674, 0.00034674, 0.00034674
model_creation/runs/detect/train5/results.png ADDED
model_creation/runs/detect/train5/train_batch0.jpg ADDED
model_creation/runs/detect/train5/train_batch1.jpg ADDED
model_creation/runs/detect/train5/train_batch2.jpg ADDED
model_creation/runs/detect/train5/val_batch0_labels.jpg ADDED
model_creation/runs/detect/train5/val_batch0_pred.jpg ADDED
model_creation/runs/detect/train5/val_batch1_labels.jpg ADDED
model_creation/runs/detect/train5/val_batch1_pred.jpg ADDED
model_creation/runs/detect/train5/val_batch2_labels.jpg ADDED
model_creation/runs/detect/train5/val_batch2_pred.jpg ADDED
model_creation/runs/detect/train5/weights/best.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e96681ca0f2777bbf9b81f9ec2c8c9098dc775ee525091491d6ec37e39f0140d
3
+ size 22500057
model_creation/runs/detect/train5/weights/last.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:229ada749eb509008639fedd342fee7c851ce0d068af481a0e230863a665e373
3
+ size 22500057
model_creation/runs/detect/train53/F1_curve.png ADDED
model_creation/runs/detect/train53/PR_curve.png ADDED
model_creation/runs/detect/train53/P_curve.png ADDED
model_creation/runs/detect/train53/R_curve.png ADDED
model_creation/runs/detect/train53/confusion_matrix.png ADDED
model_creation/runs/detect/train53/confusion_matrix_normalized.png ADDED
model_creation/runs/detect/train53/val_batch0_labels.jpg ADDED
model_creation/runs/detect/train53/val_batch0_pred.jpg ADDED
model_creation/runs/detect/train53/val_batch1_labels.jpg ADDED
model_creation/runs/detect/train53/val_batch1_pred.jpg ADDED
model_creation/runs/detect/train53/val_batch2_labels.jpg ADDED
model_creation/runs/detect/train53/val_batch2_pred.jpg ADDED
model_creation/translated_image.png ADDED
model_creation/yolov8s.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:268e5bb54c640c96c3510224833bc2eeacab4135c6deb41502156e39986b562d
3
+ size 22573363
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ ipykernel==6.29.4
2
+ pillow==10.3.0
3
+ ultralytics==8.2.23
4
+ manga-ocr==0.1.11
5
+ googletrans==4.0.0-rc1
6
+ deep-translator==1.11.4
7
+ fastapi==0.111.0
8
+ uvicorn==0.30.0
9
+
server.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This file contains the FastAPI application that serves the web interface and handles the API requests.
3
+ """
4
+
5
+ import os
6
+ import io
7
+ import base64
8
+
9
+ from fastapi import FastAPI
10
+ from fastapi.middleware.cors import CORSMiddleware
11
+ from fastapi.staticfiles import StaticFiles
12
+ from fastapi.templating import Jinja2Templates
13
+ from starlette.requests import Request
14
+ from PIL import Image
15
+ import uvicorn
16
+ from ultralytics import YOLO
17
+
18
+ from utils.predict_bounding_boxes import predict_bounding_boxes
19
+ from utils.manga_ocr import get_text_from_images
20
+ from utils.translate_manga import translate_manga
21
+ from utils.write_text_on_image import write_text
22
+
23
+ # Load the object detection model
24
+ best_model_path = "./model_creation/runs/detect/train5"
25
+ object_detection_model = YOLO(os.path.join(best_model_path, "weights/best.pt"))
26
+
27
+ app = FastAPI()
28
+
29
+ # Add CORS middleware
30
+ app.add_middleware(
31
+ CORSMiddleware,
32
+ allow_origins=["*"],
33
+ allow_methods=["*"],
34
+ allow_headers=["*"]
35
+ )
36
+
37
+ # Serve static files and templates
38
+ app.mount("/static", StaticFiles(directory="static"), name="static")
39
+ app.mount("/fonts", StaticFiles(directory="fonts"), name="fonts")
40
+ templates = Jinja2Templates(directory="templates")
41
+
42
+ @app.get("/")
43
+ def home(request: Request):
44
+ return templates.TemplateResponse("index.html", {"request": request})
45
+
46
+
47
+ @app.post("/predict")
48
+ def predict(request: dict):
49
+ image = request["image"]
50
+
51
+ # Decode base64-encoded image
52
+ image = base64.b64decode(image)
53
+ image = Image.open(io.BytesIO(image))
54
+
55
+ # Save the image
56
+ image.save("image.jpg")
57
+
58
+ # Perform object detection
59
+ result = predict_bounding_boxes(object_detection_model, "image.jpg")
60
+
61
+ # Extract text from images
62
+ text_list = get_text_from_images("./bounding_box_images")
63
+
64
+ # Translate the manga
65
+ translated_text_list = translate_manga(text_list)
66
+
67
+ # Write translation text on image
68
+ translated_image = write_text(result, translated_text_list, "image.jpg")
69
+
70
+ # Convert the image to base64
71
+ buff = io.BytesIO()
72
+ translated_image.save(buff, format="JPEG")
73
+ img_str = base64.b64encode(buff.getvalue()).decode("utf-8")
74
+
75
+ # Clean up
76
+ os.remove("image.jpg")
77
+ os.remove("translated_image.png")
78
+
79
+ return {"image": img_str}
80
+
81
+
82
+ if __name__ == '__main__':
83
+ uvicorn.run('app:app', host='localhost', port=8000, reload=True)
static/index.js ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ "use strict";
2
+
3
+ async function predict() {
4
+ const fileInput = document.getElementById('fileInput');
5
+ const translateButton = document.getElementById('translateButton');
6
+ const spinner = document.getElementById('spinner');
7
+ const inputImage = document.getElementById('inputImage');
8
+ const outputImage = document.getElementById('outputImage');
9
+ const downloadButton = document.getElementById('downloadButton');
10
+
11
+ downloadButton.style.display = 'none';
12
+
13
+ if (fileInput.files.length === 0) {
14
+ alert('Please select an image file.');
15
+ return;
16
+ }
17
+
18
+ const file = fileInput.files[0];
19
+ const reader = new FileReader();
20
+
21
+ reader.onload = function () {
22
+ const base64Image = reader.result.split(',')[1];
23
+ inputImage.src = `data:image/jpeg;base64,${base64Image}`;
24
+ inputImage.style.display = 'block';
25
+ };
26
+
27
+ reader.readAsDataURL(file);
28
+
29
+ translateButton.style.display = 'none';
30
+ spinner.style.display = 'block';
31
+
32
+ reader.onloadend = async function () {
33
+ const base64Image = reader.result.split(',')[1];
34
+
35
+ const response = await fetch('/predict', {
36
+ method: 'POST',
37
+ headers: {
38
+ 'Content-Type': 'application/json'
39
+ },
40
+ body: JSON.stringify({ image: base64Image })
41
+ });
42
+
43
+ const result = await response.json();
44
+ if (response.status !== 200) {
45
+ alert(result.error);
46
+ return;
47
+ }
48
+ outputImage.src = `data:image/jpeg;base64,${result.image}`;
49
+ outputImage.style.display = 'block';
50
+ downloadButton.href = outputImage.src;
51
+ downloadButton.style.display = 'block';
52
+
53
+ translateButton.style.display = 'inline-block';
54
+ spinner.style.display = 'none';
55
+
56
+ };
57
+ }
static/styles.css ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ @font-face {
2
+ font-family: "MangaFont";
3
+ src: url("../fonts/mangat.ttf") format("truetype");
4
+ }
5
+
6
+ body {
7
+ font-family: "MangaFont", Arial, sans-serif;
8
+ text-align: center;
9
+ background-color: #f0f0f0;
10
+ margin: 0;
11
+ padding: 0;
12
+ }
13
+
14
+ header {
15
+ background-color: #4caf50;
16
+ color: white;
17
+ padding: 10px 0;
18
+ }
19
+
20
+ a {
21
+ color: white;
22
+ text-decoration: none;
23
+ }
24
+
25
+ .container {
26
+ padding: 20px;
27
+ }
28
+
29
+ input[type="file"] {
30
+ margin: 20px 0;
31
+ padding: 10px;
32
+ border: 2px solid #4caf50;
33
+ border-radius: 5px;
34
+ background-color: #fff;
35
+ cursor: pointer;
36
+ transition: border-color 0.3s;
37
+ }
38
+
39
+ input[type="file"]:hover {
40
+ border-color: #45a049;
41
+ }
42
+
43
+ button {
44
+ padding: 10px 20px;
45
+ background-color: #4caf50;
46
+ color: white;
47
+ border: none;
48
+ border-radius: 5px;
49
+ cursor: pointer;
50
+ font-size: 16px;
51
+ transition: background-color 0.3s, transform 0.3s;
52
+ }
53
+
54
+ button:hover {
55
+ background-color: #45a049;
56
+ transform: scale(1.05);
57
+ }
58
+
59
+ .spinner {
60
+ border: 16px solid #f3f3f3;
61
+ border-top: 16px solid #4caf50;
62
+ border-radius: 50%;
63
+ width: 50px;
64
+ height: 50px;
65
+ animation: spin 2s linear infinite;
66
+ margin: 20px auto;
67
+ }
68
+
69
+ @keyframes spin {
70
+ 0% {
71
+ transform: rotate(0deg);
72
+ }
73
+ 100% {
74
+ transform: rotate(360deg);
75
+ }
76
+ }
77
+
78
+ .images-container {
79
+ display: flex;
80
+ justify-content: space-around;
81
+ margin-top: 20px;
82
+ }
83
+
84
+ .image-wrapper {
85
+ width: 45%;
86
+ }
87
+
88
+ .image-wrapper h3 {
89
+ margin-bottom: 10px;
90
+ }
91
+
92
+ #fileInput::file-selector-button {
93
+ padding: 10px 20px;
94
+ background-color: #4caf50;
95
+ color: white;
96
+ border: none;
97
+ border-radius: 5px;
98
+ cursor: pointer;
99
+ transition: background-color 0.3s, transform 0.3s;
100
+ }
101
+
102
+ #fileInput::file-selector-button:hover {
103
+ background-color: #45a049;
104
+ transform: scale(1.05);
105
+ }
templates/index.html ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!DOCTYPE html>
2
+ <html lang="en">
3
+ <head>
4
+ <meta charset="UTF-8" />
5
+ <meta name="viewport" content="width=device-width, initial-scale=1.0" />
6
+ <title>Manga Translator</title>
7
+ <link rel="stylesheet" href="/static/styles.css" />
8
+ </head>
9
+ <body>
10
+ <header>
11
+ <h1>Manga Translator</h1>
12
+ </header>
13
+ <div class="container">
14
+ <input type="file" id="fileInput" accept="image/*" />
15
+ <br />
16
+ <button id="translateButton" onclick="predict()">Translate</button>
17
+ <div id="spinner" class="spinner" style="display: none"></div>
18
+ <div class="images-container">
19
+ <div class="image-wrapper">
20
+ <h3>Original Image</h3>
21
+ <img
22
+ id="inputImage"
23
+ alt="Selected Manga"
24
+ style="max-width: 100%"
25
+ />
26
+ </div>
27
+ <div class="image-wrapper">
28
+ <h3>Translated Image</h3>
29
+ <img
30
+ id="outputImage"
31
+ alt="Translated Manga"
32
+ style="max-width: 100%; display: none"
33
+ />
34
+ <button>
35
+ <a
36
+ id="downloadButton"
37
+ href="#"
38
+ download="translated_manga.jpg"
39
+ style="display: none"
40
+ >Download Translated Image</a
41
+ >
42
+ </button>
43
+ </div>
44
+ </div>
45
+ </div>
46
+ <script src="/static/index.js"></script>
47
+ </body>
48
+ </html>