Demosthene-OR
commited on
Commit
·
34e7c43
1
Parent(s):
5cb11b9
Add
Browse files- tabs/data_viz_tab.py +1 -1
- tabs/game_tab.py +1 -1
- tabs/id_lang_tab.py +1 -1
- tabs/modelisation_seq2seq_tab.py +2 -2
tabs/data_viz_tab.py
CHANGED
@@ -247,7 +247,7 @@ def proximite():
|
|
247 |
tokens = []
|
248 |
|
249 |
nb_words = st.slider(tr('Nombre de mots à afficher')+' :',10,50, value=20)
|
250 |
-
df = pd.read_csv('
|
251 |
words_en = df.index.to_list()[:nb_words]
|
252 |
words_fr = df['Francais'].to_list()[:nb_words]
|
253 |
|
|
|
247 |
tokens = []
|
248 |
|
249 |
nb_words = st.slider(tr('Nombre de mots à afficher')+' :',10,50, value=20)
|
250 |
+
df = pd.read_csv(dataPath+'/data/dict_we_en_fr',header=0,index_col=0, encoding ="utf-8", keep_default_na=False)
|
251 |
words_en = df.index.to_list()[:nb_words]
|
252 |
words_fr = df['Francais'].to_list()[:nb_words]
|
253 |
|
tabs/game_tab.py
CHANGED
@@ -133,7 +133,7 @@ def run():
|
|
133 |
stat = top_stats[k]
|
134 |
print("%s memory blocks: %.1f KiB" % (stat.count, stat.size / 1024))
|
135 |
for line in stat.traceback.format():
|
136 |
-
print(line)
|
137 |
total_mem = sum(stat.size for stat in top_stats)
|
138 |
print("Total allocated size: %.1f KiB" % (total_mem / 1024))
|
139 |
return
|
|
|
133 |
stat = top_stats[k]
|
134 |
print("%s memory blocks: %.1f KiB" % (stat.count, stat.size / 1024))
|
135 |
for line in stat.traceback.format():
|
136 |
+
print(' >'+line)
|
137 |
total_mem = sum(stat.size for stat in top_stats)
|
138 |
print("Total allocated size: %.1f KiB" % (total_mem / 1024))
|
139 |
return
|
tabs/id_lang_tab.py
CHANGED
@@ -98,7 +98,7 @@ def init_dl_identifier():
|
|
98 |
list_lan = read_list_lan()
|
99 |
lan_identified = [lan_to_language[l] for l in list_lan]
|
100 |
label_encoder.fit(list_lan)
|
101 |
-
merge = Merge(dataPath+"/dl_id_lang_split",
|
102 |
dl_model = keras.models.load_model(dataPath+"/dl_tiktoken_id_language_model.h5")
|
103 |
return dl_model, label_encoder, list_lan, lan_identified
|
104 |
|
|
|
98 |
list_lan = read_list_lan()
|
99 |
lan_identified = [lan_to_language[l] for l in list_lan]
|
100 |
label_encoder.fit(list_lan)
|
101 |
+
merge = Merge(dataPath+"/dl_id_lang_split", dataPath, "dl_tiktoken_id_language_model.h5").merge(cleanup=False)
|
102 |
dl_model = keras.models.load_model(dataPath+"/dl_tiktoken_id_language_model.h5")
|
103 |
return dl_model, label_encoder, list_lan, lan_identified
|
104 |
|
tabs/modelisation_seq2seq_tab.py
CHANGED
@@ -413,8 +413,8 @@ def run():
|
|
413 |
""")
|
414 |
, unsafe_allow_html=True)
|
415 |
st.write("<center><h5>"+tr("Architecture du modèle utilisé")+":</h5>", unsafe_allow_html=True)
|
416 |
-
plot_model(translation_model, show_shapes=True, show_layer_names=True, show_layer_activations=True,rankdir='TB',to_file='
|
417 |
-
st.image('
|
418 |
st.write("</center>", unsafe_allow_html=True)
|
419 |
|
420 |
|
|
|
413 |
""")
|
414 |
, unsafe_allow_html=True)
|
415 |
st.write("<center><h5>"+tr("Architecture du modèle utilisé")+":</h5>", unsafe_allow_html=True)
|
416 |
+
plot_model(translation_model, show_shapes=True, show_layer_names=True, show_layer_activations=True,rankdir='TB',to_file=st.session_state.ImagePath+'/model_plot.png')
|
417 |
+
st.image(st.session_state.ImagePath+'/model_plot.png',use_column_width=True)
|
418 |
st.write("</center>", unsafe_allow_html=True)
|
419 |
|
420 |
|