|
from fastapi import FastAPI, HTTPException, Header, Depends, Request, Response |
|
from fastapi.responses import JSONResponse |
|
from fastapi.security import HTTPBasic, HTTPBasicCredentials |
|
from fastapi.exceptions import RequestValidationError |
|
from typing import Optional, List |
|
from pydantic import BaseModel, ValidationError |
|
import pandas as pd |
|
import numpy as np |
|
import os |
|
from filesplit.merge import Merge |
|
import tensorflow as tf |
|
import string |
|
import re |
|
from tensorflow import keras |
|
from keras_nlp.layers import TransformerEncoder |
|
from tensorflow.keras import layers |
|
from tensorflow.keras.utils import plot_model |
|
|
|
api = FastAPI() |
|
dataPath = "data" |
|
imagePath = "images" |
|
|
|
|
|
strip_chars = string.punctuation + "¿" |
|
strip_chars = strip_chars.replace("[", "") |
|
strip_chars = strip_chars.replace("]", "") |
|
|
|
def custom_standardization(input_string): |
|
lowercase = tf.strings.lower(input_string) |
|
lowercase=tf.strings.regex_replace(lowercase, "[à]", "a") |
|
return tf.strings.regex_replace( |
|
lowercase, f"[{re.escape(strip_chars)}]", "") |
|
|
|
def load_vocab(file_path): |
|
with open(file_path, "r", encoding="utf-8") as file: |
|
return file.read().split('\n')[:-1] |
|
|
|
|
|
def decode_sequence_rnn(input_sentence, src, tgt): |
|
global translation_model |
|
|
|
vocab_size = 15000 |
|
sequence_length = 50 |
|
|
|
source_vectorization = layers.TextVectorization( |
|
max_tokens=vocab_size, |
|
output_mode="int", |
|
output_sequence_length=sequence_length, |
|
standardize=custom_standardization, |
|
vocabulary = load_vocab(dataPath+"/vocab_"+src+".txt"), |
|
) |
|
|
|
target_vectorization = layers.TextVectorization( |
|
max_tokens=vocab_size, |
|
output_mode="int", |
|
output_sequence_length=sequence_length + 1, |
|
standardize=custom_standardization, |
|
vocabulary = load_vocab(dataPath+"/vocab_"+tgt+".txt"), |
|
) |
|
|
|
tgt_vocab = target_vectorization.get_vocabulary() |
|
tgt_index_lookup = dict(zip(range(len(tgt_vocab)), tgt_vocab)) |
|
max_decoded_sentence_length = 50 |
|
tokenized_input_sentence = source_vectorization([input_sentence]) |
|
decoded_sentence = "[start]" |
|
for i in range(max_decoded_sentence_length): |
|
tokenized_target_sentence = target_vectorization([decoded_sentence]) |
|
next_token_predictions = translation_model.predict( |
|
[tokenized_input_sentence, tokenized_target_sentence], verbose=0) |
|
sampled_token_index = np.argmax(next_token_predictions[0, i, :]) |
|
sampled_token = tgt_index_lookup[sampled_token_index] |
|
decoded_sentence += " " + sampled_token |
|
if sampled_token == "[end]": |
|
break |
|
return decoded_sentence[8:-6] |
|
|
|
|
|
|
|
|
|
|
|
class TransformerDecoder(layers.Layer): |
|
def __init__(self, embed_dim, dense_dim, num_heads, **kwargs): |
|
super().__init__(**kwargs) |
|
self.embed_dim = embed_dim |
|
self.dense_dim = dense_dim |
|
self.num_heads = num_heads |
|
self.attention_1 = layers.MultiHeadAttention( |
|
num_heads=num_heads, key_dim=embed_dim) |
|
self.attention_2 = layers.MultiHeadAttention( |
|
num_heads=num_heads, key_dim=embed_dim) |
|
self.dense_proj = keras.Sequential( |
|
[layers.Dense(dense_dim, activation="relu"), |
|
layers.Dense(embed_dim),] |
|
) |
|
self.layernorm_1 = layers.LayerNormalization() |
|
self.layernorm_2 = layers.LayerNormalization() |
|
self.layernorm_3 = layers.LayerNormalization() |
|
self.supports_masking = True |
|
|
|
def get_config(self): |
|
config = super().get_config() |
|
config.update({ |
|
"embed_dim": self.embed_dim, |
|
"num_heads": self.num_heads, |
|
"dense_dim": self.dense_dim, |
|
}) |
|
return config |
|
|
|
def get_causal_attention_mask(self, inputs): |
|
input_shape = tf.shape(inputs) |
|
batch_size, sequence_length = input_shape[0], input_shape[1] |
|
i = tf.range(sequence_length)[:, tf.newaxis] |
|
j = tf.range(sequence_length) |
|
mask = tf.cast(i >= j, dtype="int32") |
|
mask = tf.reshape(mask, (1, input_shape[1], input_shape[1])) |
|
mult = tf.concat( |
|
[tf.expand_dims(batch_size, -1), |
|
tf.constant([1, 1], dtype=tf.int32)], axis=0) |
|
return tf.tile(mask, mult) |
|
|
|
def call(self, inputs, encoder_outputs, mask=None): |
|
causal_mask = self.get_causal_attention_mask(inputs) |
|
if mask is not None: |
|
padding_mask = tf.cast( |
|
mask[:, tf.newaxis, :], dtype="int32") |
|
padding_mask = tf.minimum(padding_mask, causal_mask) |
|
else: |
|
padding_mask = mask |
|
attention_output_1 = self.attention_1( |
|
query=inputs, |
|
value=inputs, |
|
key=inputs, |
|
attention_mask=causal_mask) |
|
attention_output_1 = self.layernorm_1(inputs + attention_output_1) |
|
attention_output_2 = self.attention_2( |
|
query=attention_output_1, |
|
value=encoder_outputs, |
|
key=encoder_outputs, |
|
attention_mask=padding_mask, |
|
) |
|
attention_output_2 = self.layernorm_2( |
|
attention_output_1 + attention_output_2) |
|
proj_output = self.dense_proj(attention_output_2) |
|
return self.layernorm_3(attention_output_2 + proj_output) |
|
|
|
class PositionalEmbedding(layers.Layer): |
|
def __init__(self, sequence_length, input_dim, output_dim, **kwargs): |
|
super().__init__(**kwargs) |
|
self.token_embeddings = layers.Embedding( |
|
input_dim=input_dim, output_dim=output_dim) |
|
self.position_embeddings = layers.Embedding( |
|
input_dim=sequence_length, output_dim=output_dim) |
|
self.sequence_length = sequence_length |
|
self.input_dim = input_dim |
|
self.output_dim = output_dim |
|
|
|
def call(self, inputs): |
|
length = tf.shape(inputs)[-1] |
|
positions = tf.range(start=0, limit=length, delta=1) |
|
embedded_tokens = self.token_embeddings(inputs) |
|
embedded_positions = self.position_embeddings(positions) |
|
return embedded_tokens + embedded_positions |
|
|
|
def compute_mask(self, inputs, mask=None): |
|
return tf.math.not_equal(inputs, 0) |
|
|
|
def get_config(self): |
|
config = super(PositionalEmbedding, self).get_config() |
|
config.update({ |
|
"output_dim": self.output_dim, |
|
"sequence_length": self.sequence_length, |
|
"input_dim": self.input_dim, |
|
}) |
|
return config |
|
|
|
def decode_sequence_tranf(input_sentence, src, tgt): |
|
global translation_model |
|
|
|
vocab_size = 15000 |
|
sequence_length = 50 |
|
|
|
source_vectorization = layers.TextVectorization( |
|
max_tokens=vocab_size, |
|
output_mode="int", |
|
output_sequence_length=sequence_length, |
|
standardize=custom_standardization, |
|
vocabulary = load_vocab(dataPath+"/vocab_"+src+".txt"), |
|
) |
|
|
|
target_vectorization = layers.TextVectorization( |
|
max_tokens=vocab_size, |
|
output_mode="int", |
|
output_sequence_length=sequence_length + 1, |
|
standardize=custom_standardization, |
|
vocabulary = load_vocab(dataPath+"/vocab_"+tgt+".txt"), |
|
) |
|
|
|
tgt_vocab = target_vectorization.get_vocabulary() |
|
tgt_index_lookup = dict(zip(range(len(tgt_vocab)), tgt_vocab)) |
|
max_decoded_sentence_length = 50 |
|
tokenized_input_sentence = source_vectorization([input_sentence]) |
|
decoded_sentence = "[start]" |
|
for i in range(max_decoded_sentence_length): |
|
tokenized_target_sentence = target_vectorization( |
|
[decoded_sentence])[:, :-1] |
|
predictions = translation_model( |
|
[tokenized_input_sentence, tokenized_target_sentence]) |
|
sampled_token_index = np.argmax(predictions[0, i, :]) |
|
sampled_token = tgt_index_lookup[sampled_token_index] |
|
decoded_sentence += " " + sampled_token |
|
if sampled_token == "[end]": |
|
break |
|
return decoded_sentence[8:-6] |
|
|
|
|
|
|
|
def load_all_data(): |
|
|
|
merge = Merge( dataPath+"/rnn_en-fr_split", dataPath, "seq2seq_rnn-model-en-fr.h5").merge(cleanup=False) |
|
merge = Merge( dataPath+"/rnn_fr-en_split", dataPath, "seq2seq_rnn-model-fr-en.h5").merge(cleanup=False) |
|
rnn_en_fr = keras.models.load_model(dataPath+"/seq2seq_rnn-model-en-fr.h5", compile=False) |
|
rnn_fr_en = keras.models.load_model(dataPath+"/seq2seq_rnn-model-fr-en.h5", compile=False) |
|
rnn_en_fr.compile(optimizer="rmsprop", loss="sparse_categorical_crossentropy", metrics=["accuracy"]) |
|
rnn_fr_en.compile(optimizer="rmsprop", loss="sparse_categorical_crossentropy", metrics=["accuracy"]) |
|
|
|
custom_objects = {"TransformerDecoder": TransformerDecoder, "PositionalEmbedding": PositionalEmbedding} |
|
with keras.saving.custom_object_scope(custom_objects): |
|
transformer_en_fr = keras.models.load_model( "data/transformer-model-en-fr.h5") |
|
transformer_fr_en = keras.models.load_model( "data/transformer-model-fr-en.h5") |
|
merge = Merge( "data/transf_en-fr_weight_split", "data", "transformer-model-en-fr.weights.h5").merge(cleanup=False) |
|
merge = Merge( "data/transf_fr-en_weight_split", "data", "transformer-model-fr-en.weights.h5").merge(cleanup=False) |
|
transformer_en_fr.compile(optimizer="rmsprop", loss="sparse_categorical_crossentropy", metrics=["accuracy"]) |
|
transformer_fr_en.compile(optimizer="rmsprop", loss="sparse_categorical_crossentropy", metrics=["accuracy"]) |
|
|
|
return rnn_en_fr, rnn_fr_en, transformer_en_fr, transformer_fr_en |
|
|
|
rnn_en_fr, rnn_fr_en, transformer_en_fr, transformer_fr_en = load_all_data() |
|
|
|
|
|
def display_translation(n1, Lang,model_type): |
|
global df_data_src, df_data_tgt, placeholder |
|
|
|
placeholder = st.empty() |
|
with st.status(":sunglasses:", expanded=True): |
|
s = df_data_src.iloc[n1:n1+5][0].tolist() |
|
s_trad = [] |
|
s_trad_ref = df_data_tgt.iloc[n1:n1+5][0].tolist() |
|
source = Lang[:2] |
|
target = Lang[-2:] |
|
for i in range(3): |
|
if model_type==1: |
|
s_trad.append(decode_sequence_rnn(s[i], source, target)) |
|
else: |
|
s_trad.append(decode_sequence_tranf(s[i], source, target)) |
|
st.write("**"+source+" :** :blue["+ s[i]+"]") |
|
st.write("**"+target+" :** "+s_trad[-1]) |
|
st.write("**ref. :** "+s_trad_ref[i]) |
|
st.write("") |
|
with placeholder: |
|
st.write("<p style='text-align:center;background-color:red; color:white')>Score Bleu = "+str(int(round(corpus_bleu(s_trad,[s_trad_ref]).score,0)))+"%</p>", \ |
|
unsafe_allow_html=True) |
|
|
|
|
|
def find_lang_label(lang_sel): |
|
global lang_tgt, label_lang |
|
return label_lang[lang_tgt.index(lang_sel)] |
|
|
|
@api.get('/', name="Vérification que l'API fonctionne") |
|
def check_api(): |
|
load_all_data() |
|
return {'message': "L'API fonctionne"} |
|
|
|
@api.get('/small_vocab/rnn', name="Traduction par RNN") |
|
def check_api(lang_tgt:str, |
|
texte: str): |
|
global translation_model |
|
|
|
if (lang_tgt=='en'): |
|
translation_model = rnn_fr_en |
|
return decode_sequence_rnn(texte, "fr", "en") |
|
else: |
|
translation_model = rnn_en_fr |
|
return decode_sequence_rnn(texte, "en", "fr") |
|
|
|
@api.get('/small_vocab/transformer', name="Traduction par Transformer") |
|
def check_api(lang_tgt:str, |
|
texte: str): |
|
global translation_model |
|
|
|
if (lang_tgt=='en'): |
|
translation_model = transformer_fr_en |
|
return decode_sequence_tranf(texte, "fr", "en") |
|
else: |
|
translation_model = transformer_en_fr |
|
return decode_sequence_tranf(texte, "en", "fr") |
|
|
|
@api.get('/small_vocab/plot_model', name="Affiche le modèle") |
|
def check_api(lang_tgt:str, |
|
model_type: str): |
|
global translation_model |
|
|
|
if (lang_tgt=='en'): |
|
if model_type=="rnn": |
|
translation_model = rnn_fr_en |
|
else: |
|
translation_model = transformer_fr_en |
|
else: |
|
if model_type=="rnn": |
|
translation_model = rnn_en_fr |
|
else: |
|
translation_model = transformer_en_fr |
|
plot_model(translation_model, show_shapes=True, show_layer_names=True, show_layer_activations=True,rankdir='TB',to_file=imagePath+'/model_plot.png') |
|
with open(imagePath+'/model_plot.png', "rb") as image_file: |
|
|
|
image_data = image_file.read() |
|
|
|
|
|
return Response(content=image_data, media_type="image/png") |
|
''' |
|
def run(): |
|
|
|
global n1, df_data_src, df_data_tgt, translation_model, placeholder, model_speech |
|
global df_data_en, df_data_fr, lang_classifier, translation_en_fr, translation_fr_en |
|
global lang_tgt, label_lang |
|
|
|
st.write("") |
|
st.title(tr(title)) |
|
# |
|
st.write("## **"+tr("Explications")+" :**\n") |
|
|
|
st.markdown(tr( |
|
""" |
|
Enfin, nous avons réalisé une traduction :red[**Seq2Seq**] ("Sequence-to-Sequence") avec des :red[**réseaux neuronaux**]. |
|
""") |
|
, unsafe_allow_html=True) |
|
st.markdown(tr( |
|
""" |
|
La traduction Seq2Seq est une méthode d'apprentissage automatique qui permet de traduire des séquences de texte d'une langue à une autre en utilisant |
|
un :red[**encodeur**] pour capturer le sens du texte source, un :red[**décodeur**] pour générer la traduction, |
|
avec un ou plusieurs :red[**vecteurs d'intégration**] qui relient les deux, afin de transmettre le contexte, l'attention ou la position. |
|
""") |
|
, unsafe_allow_html=True) |
|
st.image("assets/deepnlp_graph1.png",use_column_width=True) |
|
st.markdown(tr( |
|
""" |
|
Nous avons mis en oeuvre ces techniques avec des Réseaux Neuronaux Récurrents (GRU en particulier) et des Transformers |
|
Vous en trouverez :red[**5 illustrations**] ci-dessous. |
|
""") |
|
, unsafe_allow_html=True) |
|
|
|
# Utilisation du module translate |
|
lang_tgt = ['en','fr','af','ak','sq','de','am','en','ar','hy','as','az','ba','bm','eu','bn','be','my','bs','bg','ks','ca','ny','zh','si','ko','co','ht','hr','da','dz','gd','es','eo','et','ee','fo','fj','fi','fr','fy','gl','cy','lg','ka','el','gn','gu','ha','he','hi','hu','ig','id','iu','ga','is','it','ja','kn','kk','km','ki','rw','ky','rn','ku','lo','la','lv','li','ln','lt','lb','mk','ms','ml','dv','mg','mt','mi','mr','mn','nl','ne','no','nb','nn','oc','or','ug','ur','uz','ps','pa','fa','pl','pt','ro','ru','sm','sg','sa','sc','sr','sn','sd','sk','sl','so','st','su','sv','sw','ss','tg','tl','ty','ta','tt','cs','te','th','bo','ti','to','ts','tn','tr','tk','tw','uk','vi','wo','xh','yi'] |
|
label_lang = ['Anglais','Français','Afrikaans','Akan','Albanais','Allemand','Amharique','Anglais','Arabe','Arménien','Assamais','Azéri','Bachkir','Bambara','Basque','Bengali','Biélorusse','Birman','Bosnien','Bulgare','Cachemiri','Catalan','Chichewa','Chinois','Cingalais','Coréen','Corse','Créolehaïtien','Croate','Danois','Dzongkha','Écossais','Espagnol','Espéranto','Estonien','Ewe','Féroïen','Fidjien','Finnois','Français','Frisonoccidental','Galicien','Gallois','Ganda','Géorgien','Grecmoderne','Guarani','Gujarati','Haoussa','Hébreu','Hindi','Hongrois','Igbo','Indonésien','Inuktitut','Irlandais','Islandais','Italien','Japonais','Kannada','Kazakh','Khmer','Kikuyu','Kinyarwanda','Kirghiz','Kirundi','Kurde','Lao','Latin','Letton','Limbourgeois','Lingala','Lituanien','Luxembourgeois','Macédonien','Malais','Malayalam','Maldivien','Malgache','Maltais','MaorideNouvelle-Zélande','Marathi','Mongol','Néerlandais','Népalais','Norvégien','Norvégienbokmål','Norvégiennynorsk','Occitan','Oriya','Ouïghour','Ourdou','Ouzbek','Pachto','Pendjabi','Persan','Polonais','Portugais','Roumain','Russe','Samoan','Sango','Sanskrit','Sarde','Serbe','Shona','Sindhi','Slovaque','Slovène','Somali','SothoduSud','Soundanais','Suédois','Swahili','Swati','Tadjik','Tagalog','Tahitien','Tamoul','Tatar','Tchèque','Télougou','Thaï','Tibétain','Tigrigna','Tongien','Tsonga','Tswana','Turc','Turkmène','Twi','Ukrainien','Vietnamien','Wolof','Xhosa','Yiddish'] |
|
|
|
lang_src = {'ar': 'arabic', 'bg': 'bulgarian', 'de': 'german', 'el':'modern greek', 'en': 'english', 'es': 'spanish', 'fr': 'french', \ |
|
'hi': 'hindi', 'it': 'italian', 'ja': 'japanese', 'nl': 'dutch', 'pl': 'polish', 'pt': 'portuguese', 'ru': 'russian', 'sw': 'swahili', \ |
|
'th': 'thai', 'tr': 'turkish', 'ur': 'urdu', 'vi': 'vietnamese', 'zh': 'chinese'} |
|
|
|
st.write("#### "+tr("Choisissez le type de traduction")+" :") |
|
|
|
chosen_id = tab_bar(data=[ |
|
TabBarItemData(id="tab1", title="small vocab", description=tr("avec Keras et un RNN")), |
|
TabBarItemData(id="tab2", title="small vocab", description=tr("avec Keras et un Transformer")), |
|
TabBarItemData(id="tab3", title=tr("Phrase personnelle"), description=tr("à écrire")), |
|
TabBarItemData(id="tab4", title=tr("Phrase personnelle"), description=tr("à dicter")), |
|
TabBarItemData(id="tab5", title=tr("Funny translation !"), description=tr("avec le Fine Tuning"))], |
|
default="tab1") |
|
|
|
if (chosen_id == "tab1") or (chosen_id == "tab2") : |
|
if (chosen_id == "tab1"): |
|
st.write("<center><h5><b>"+tr("Schéma d'un Réseau de Neurones Récurrents")+"</b></h5></center>", unsafe_allow_html=True) |
|
st.image("assets/deepnlp_graph3.png",use_column_width=True) |
|
else: |
|
st.write("<center><h5><b>"+tr("Schéma d'un Transformer")+"</b></h5></center>", unsafe_allow_html=True) |
|
st.image("assets/deepnlp_graph12.png",use_column_width=True) |
|
st.write("## **"+tr("Paramètres")+" :**\n") |
|
TabContainerHolder = st.container() |
|
Sens = TabContainerHolder.radio(tr('Sens')+':',('Anglais -> Français','Français -> Anglais'), horizontal=True) |
|
Lang = ('en_fr' if Sens=='Anglais -> Français' else 'fr_en') |
|
|
|
if (Lang=='en_fr'): |
|
df_data_src = df_data_en |
|
df_data_tgt = df_data_fr |
|
if (chosen_id == "tab1"): |
|
translation_model = rnn_en_fr |
|
else: |
|
translation_model = transformer_en_fr |
|
else: |
|
df_data_src = df_data_fr |
|
df_data_tgt = df_data_en |
|
if (chosen_id == "tab1"): |
|
translation_model = rnn_fr_en |
|
else: |
|
translation_model = transformer_fr_en |
|
sentence1 = st.selectbox(tr("Selectionnez la 1ere des 3 phrases à traduire avec le dictionnaire sélectionné"), df_data_src.iloc[:-4],index=int(n1) ) |
|
n1 = df_data_src[df_data_src[0]==sentence1].index.values[0] |
|
|
|
st.write("## **"+tr("Résultats")+" :**\n") |
|
if (chosen_id == "tab1"): |
|
display_translation(n1, Lang,1) |
|
else: |
|
display_translation(n1, Lang,2) |
|
|
|
st.write("## **"+tr("Details sur la méthode")+" :**\n") |
|
if (chosen_id == "tab1"): |
|
st.markdown(tr( |
|
""" |
|
Nous avons utilisé 2 Gated Recurrent Units. |
|
Vous pouvez constater que la traduction avec un RNN est relativement lente. |
|
Ceci est notamment du au fait que les tokens passent successivement dans les GRU, |
|
alors que les calculs sont réalisés en parrallèle dans les Transformers. |
|
Le score BLEU est bien meilleur que celui des traductions mot à mot. |
|
<br> |
|
""") |
|
, unsafe_allow_html=True) |
|
else: |
|
st.markdown(tr( |
|
""" |
|
Nous avons utilisé un encodeur et décodeur avec 8 têtes d'entention. |
|
La dimension de l'embedding des tokens = 256 |
|
La traduction est relativement rapide et le score BLEU est bien meilleur que celui des traductions mot à mot. |
|
<br> |
|
""") |
|
, unsafe_allow_html=True) |
|
st.write("<center><h5>"+tr("Architecture du modèle utilisé")+":</h5>", unsafe_allow_html=True) |
|
plot_model(translation_model, show_shapes=True, show_layer_names=True, show_layer_activations=True,rankdir='TB',to_file=st.session_state.ImagePath+'/model_plot.png') |
|
st.image(st.session_state.ImagePath+'/model_plot.png',use_column_width=True) |
|
st.write("</center>", unsafe_allow_html=True) |
|
|
|
''' |
|
|