Spaces:
Sleeping
Sleeping
import streamlit as st # type: ignore | |
import os | |
from sentence_transformers import SentenceTransformer | |
from translate_app import tr | |
import getpass | |
from langchain_mistralai import ChatMistralAI | |
from langgraph.checkpoint.memory import MemorySaver | |
from langgraph.graph import START, END, MessagesState, StateGraph | |
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder | |
from typing import Sequence | |
from langchain_core.messages import BaseMessage, SystemMessage, HumanMessage, AIMessage, trim_messages | |
from langgraph.graph.message import add_messages | |
from typing_extensions import Annotated, TypedDict | |
from dotenv import load_dotenv | |
import warnings | |
warnings.filterwarnings('ignore') | |
title = "Sales coaching" | |
sidebar_name = "Sales coaching" | |
dataPath = st.session_state.DataPath | |
os.environ["LANGCHAIN_TRACING_V2"] = "true" | |
os.environ["LANGCHAIN_ENDPOINT"]="https://api.smith.langchain.com" | |
os.environ["LANGCHAIN_HUB_API_URL"]="https://api.smith.langchain.com" | |
os.environ["LANGCHAIN_API_KEY"] = "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" # getpass.getpass() | |
os.environ["LANGCHAIN_PROJECT"] = "Sales Coaching Chatbot" | |
os.environ["MISTRAL_API_KEY"] = "W8q7N24HGM2ATpUdmB8rxrqkERtsxcuj" | |
model = ChatMistralAI(model="mistral-large-latest") | |
dataPath = st.session_state.DataPath | |
trimmer = trim_messages( | |
max_tokens=60, | |
strategy="last", | |
token_counter=model, | |
include_system=True, | |
allow_partial=False, | |
start_on="human", | |
) | |
prompt = ChatPromptTemplate.from_messages( | |
[ | |
( | |
"system", | |
"You are a helpful assistant. Answer all questions to the best of your ability in {language}.", | |
), | |
MessagesPlaceholder(variable_name="messages"), | |
] | |
) | |
class State(TypedDict): | |
messages: Annotated[Sequence[BaseMessage], add_messages] | |
language: str | |
def call_model(state: State): | |
chain = prompt | model | |
trimmed_messages = trimmer.invoke(state["messages"]) | |
response = chain.invoke( | |
{"messages": trimmed_messages, "language": state["language"]} | |
) | |
return {"messages": [response]} | |
# Define a new graph | |
workflow = StateGraph(state_schema=State) | |
# Define the (single) node in the graph | |
workflow.add_edge(START, "model") | |
workflow.add_node("model", call_model) | |
workflow.add_edge("model", END) | |
# Add memory | |
memory = MemorySaver() | |
app = workflow.compile(checkpointer=memory) | |
config = {"configurable": {"thread_id": "abc123"}} | |
def run(): | |
st.write("") | |
st.title(tr(title)) | |
messages = [ | |
SystemMessage(content="you're a good assistant"), | |
HumanMessage(content="hi! I'm bob"), | |
AIMessage(content="hi!"), | |
HumanMessage(content="I like vanilla ice cream"), | |
AIMessage(content="nice"), | |
HumanMessage(content="whats 2 + 2"), | |
AIMessage(content="4"), | |
HumanMessage(content="thanks"), | |
AIMessage(content="no problem!"), | |
HumanMessage(content="having fun?"), | |
AIMessage(content="yes!"), | |
] | |
trimmer.invoke(messages) | |
query = "Hi I'm Todd, please tell me a joke." | |
language = "French" | |
input_messages = [HumanMessage(query)] | |
for chunk, metadata in app.stream( | |
{"messages": input_messages, "language": language}, | |
config, | |
stream_mode="messages", | |
): | |
if isinstance(chunk, AIMessage): # Filter to just model responses | |
st.write(chunk.content, end="") | |
''' | |
sentences = ["This is an example sentence", "Each sentence is converted"] | |
sentences[0] = st.text_area(label=tr("Saisir un élément issu de la proposition de valeur (quelque soit la langue):"), value="This is an example sentence") | |
sentences[1] = st.text_area(label=tr("Saisir une phrase issue de l'acte de vente (quelque soit la langue):"), value="Each sentence is converted", height=200) | |
st.button(label=tr("Validez"), type="primary") | |
st.write(tr("Transformation de chaque phrase en vecteur (dimension = 384 ):")) | |
''' | |
st.write("") | |
st.write("") | |
st.write("") | |
st.write("") |