Spaces:
Running
Running
Update Predict.py
Browse files- Predict.py +53 -1
Predict.py
CHANGED
@@ -8,6 +8,9 @@ import sys
|
|
8 |
import joblib
|
9 |
from DL_models import CustomResNet
|
10 |
|
|
|
|
|
|
|
11 |
#Ad/Brand Gaze Prediction
|
12 |
|
13 |
#Now the model is only able to process magazine images or images with full-page counterpages
|
@@ -264,4 +267,53 @@ def CNN_Prediction(adv_imgs, ctpg_imgs, ad_locations, Gaze_Type='AG'): #Gaze_Typ
|
|
264 |
pred = torch.exp(pred*a_temp+b_temp) - 1
|
265 |
gaze += pred/10
|
266 |
|
267 |
-
return gaze
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
import joblib
|
9 |
from DL_models import CustomResNet
|
10 |
|
11 |
+
root = '/Users/jianpingye/Desktop/Marketing_Research/XGBoost_Gaze_Prediction_Platform/Gaze-Time-Prediction-for-Advertisement/XGBoost_Prediction_Model'
|
12 |
+
sys.path.append(root)
|
13 |
+
|
14 |
#Ad/Brand Gaze Prediction
|
15 |
|
16 |
#Now the model is only able to process magazine images or images with full-page counterpages
|
|
|
267 |
pred = torch.exp(pred*a_temp+b_temp) - 1
|
268 |
gaze += pred/10
|
269 |
|
270 |
+
return gaze
|
271 |
+
|
272 |
+
def HeatMap_CNN(adv_imgs, ctpg_imgs, ad_locations, Gaze_Type='AG'):
|
273 |
+
if torch.cuda.is_available():
|
274 |
+
device = 'cuda'
|
275 |
+
elif torch.backends.mps.is_available():
|
276 |
+
device = 'mps'
|
277 |
+
else:
|
278 |
+
device = 'cpu'
|
279 |
+
|
280 |
+
net = CustomResNet()
|
281 |
+
net.load_state_dict(torch.load('CNN_Gaze_Model/Fine-tune_'+Gaze_Type+'/Model_'+str(0)+'.pth',map_location=torch.device('cpu')))
|
282 |
+
net = net.to(device)
|
283 |
+
pred = net(adv_imgs/255.0,ctpg_imgs/255.0,ad_locations)
|
284 |
+
|
285 |
+
pred.backward()
|
286 |
+
|
287 |
+
# pull the gradients out of the model
|
288 |
+
gradients = net.get_activations_gradient()
|
289 |
+
|
290 |
+
# pool the gradients across the channels
|
291 |
+
pooled_gradients = torch.mean(gradients, dim=[0, 2, 3])
|
292 |
+
|
293 |
+
# get the activations of the last convolutional layer
|
294 |
+
activations = net.get_activations(adv_imgs).detach()
|
295 |
+
|
296 |
+
# weight the channels by corresponding gradients
|
297 |
+
for i in range(512):
|
298 |
+
activations[:, i, :, :] *= pooled_gradients[i]
|
299 |
+
|
300 |
+
# average the channels of the activations
|
301 |
+
heatmap = torch.mean(activations, dim=1).squeeze().to('cpu')
|
302 |
+
|
303 |
+
# relu on top of the heatmap
|
304 |
+
# expression (2) in https://arxiv.org/pdf/1610.02391.pdf
|
305 |
+
heatmap = np.maximum(heatmap, 0)
|
306 |
+
|
307 |
+
# normalize the heatmap
|
308 |
+
heatmap /= torch.max(heatmap)
|
309 |
+
|
310 |
+
img = torch.permute(adv_imgs[0],(1,2,0)).to(torch.uint8).numpy()
|
311 |
+
img = cv.cvtColor(img, cv.COLOR_BGR2RGB)
|
312 |
+
heatmap = cv.resize(heatmap.numpy(), (img.shape[1], img.shape[0]))
|
313 |
+
heatmap = np.uint8(255 * heatmap)
|
314 |
+
heatmap = cv.applyColorMap(heatmap, cv.COLORMAP_TURBO)
|
315 |
+
superimposed_img = heatmap * 0.8 + img * 0.5
|
316 |
+
superimposed_img /= np.max(superimposed_img)
|
317 |
+
superimposed_img = np.uint8(255 * superimposed_img)
|
318 |
+
|
319 |
+
return superimposed_img
|