NeuCoSVC-2 / models.py
kevinwang676's picture
Upload 93 files
9016314 verified
import torch
import torch.nn.functional as F
import torch.nn as nn
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
from utils.tools import init_weights, get_padding
import numpy as np
LRELU_SLOPE = 0.1
class ResBlock1(torch.nn.Module):
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)):
super(ResBlock1, self).__init__()
self.convs1 = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
padding=get_padding(kernel_size, dilation[2])))
])
self.convs1.apply(init_weights)
self.convs2 = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1)))
])
self.convs2.apply(init_weights)
def forward(self, x):
for c1, c2 in zip(self.convs1, self.convs2):
xt = F.leaky_relu(x, LRELU_SLOPE)
xt = c1(xt)
xt = F.leaky_relu(xt, LRELU_SLOPE)
xt = c2(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs1:
remove_weight_norm(l)
for l in self.convs2:
remove_weight_norm(l)
class ResBlock2(torch.nn.Module):
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)):
super(ResBlock2, self).__init__()
self.convs = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1])))
])
self.convs.apply(init_weights)
def forward(self, x):
for c in self.convs:
xt = F.leaky_relu(x, LRELU_SLOPE)
xt = c(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs:
remove_weight_norm(l)
class PitchEncoder(torch.nn.Module):
def __init__(self, h):
super(PitchEncoder, self).__init__()
self.lin_pre = nn.Linear(h.hubert_dim, h.hifi_dim)
self.pitch_emb = nn.Embedding(256, h.hifi_dim)
def forward(self, x, pitch):
x = self.lin_pre(x) + self.pitch_emb(pitch)
return x
class SineGen(torch.nn.Module):
""" Definition of sine generator
SineGen(samp_rate, harmonic_num = 0,
sine_amp = 0.1, noise_std = 0.003,
voiced_threshold = 0,
flag_for_pulse=False)
samp_rate: sampling rate in Hz
harmonic_num: number of harmonic overtones (default 0)
sine_amp: amplitude of sine-wavefrom (default 0.1)
noise_std: std of Gaussian noise (default 0.003)
voiced_thoreshold: F0 threshold for U/V classification (default 0)
flag_for_pulse: this SinGen is used inside PulseGen (default False)
Note: when flag_for_pulse is True, the first time step of a voiced
segment is always sin(np.pi) or cos(0)
"""
def __init__(self, samp_rate, harmonic_num = 0,
sine_amp = 0.1, noise_std = 0.003,
voiced_threshold = 0,
flag_for_pulse=False):
super(SineGen, self).__init__()
self.sine_amp = sine_amp
self.noise_std = noise_std
self.harmonic_num = harmonic_num
self.dim = self.harmonic_num + 1
self.sampling_rate = samp_rate
self.voiced_threshold = voiced_threshold
self.flag_for_pulse = flag_for_pulse
def _f02uv(self, f0):
# generate uv signal
uv = torch.ones_like(f0)
uv = uv * (f0 > self.voiced_threshold)
return uv
def _f02sine(self, f0_values, upp):
""" f0_values: (batchsize, length, dim)
where dim indicates fundamental tone and overtones
"""
# convert to F0 in rad. The interger part n can be ignored
# because 2 * np.pi * n doesn't affect phase
rad_values = (f0_values / self.sampling_rate) % 1
# initial phase noise (no noise for fundamental component)
rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2],\
device = f0_values.device)
rand_ini[:, 0] = 0
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
# instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
# for normal case
# To prevent torch.cumsum numerical overflow,
# it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1.
# Buffer tmp_over_one_idx indicates the time step to add -1.
# This will not change F0 of sine because (x-1) * 2*pi = x *2*pi
tmp_over_one = torch.cumsum(rad_values, 1) % 1
tmp_over_one *= upp
tmp_over_one = F.interpolate(
tmp_over_one.transpose(2, 1), scale_factor=upp,
mode='linear', align_corners=True
).transpose(2, 1)
rad_values = F.interpolate(rad_values.transpose(2, 1), scale_factor=upp, mode='nearest').transpose(2, 1)
tmp_over_one %= 1
tmp_over_one_idx = (tmp_over_one[:, 1:, :] -
tmp_over_one[:, :-1, :]) < 0
cumsum_shift = torch.zeros_like(rad_values)
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
sines = torch.sin(torch.cumsum(rad_values + cumsum_shift, dim=1) \
* 2 * np.pi)
return sines
def forward(self, f0, upp):
""" sine_tensor, uv = forward(f0)
input F0: tensor(batchsize=1, length, dim=1)
f0 for unvoiced steps should be 0
output sine_tensor: tensor(batchsize=1, length, dim)
output uv: tensor(batchsize=1, length, 1)
"""
with torch.no_grad():
f0 = f0.unsqueeze(-1)
f0_buf = torch.multiply(f0, torch.arange(1, self.dim + 1, device=f0.device).reshape((1, 1, -1)))
# generate sine waveforms
sine_waves = self._f02sine(f0_buf, upp) * self.sine_amp
# generate uv signal
#uv = torch.ones(f0.shape)
#uv = uv * (f0 > self.voiced_threshold)
uv = self._f02uv(f0)
uv = F.interpolate(uv.transpose(2, 1), scale_factor=upp, mode='nearest').transpose(2, 1)
# noise: for unvoiced should be similar to sine_amp
# std = self.sine_amp/3 -> max value ~ self.sine_amp
#. for voiced regions is self.noise_std
noise_amp = uv * self.noise_std + (1-uv) * self.sine_amp / 3
noise = noise_amp * torch.randn_like(sine_waves)
# first: set the unvoiced part to 0 by uv
# then: additive noise
sine_waves = sine_waves * uv + noise
return sine_waves, uv, noise
class SourceModuleHnNSF(torch.nn.Module):
""" SourceModule for hn-nsf
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
add_noise_std=0.003, voiced_threshod=0)
sampling_rate: sampling_rate in Hz
harmonic_num: number of harmonic above F0 (default: 0)
sine_amp: amplitude of sine source signal (default: 0.1)
add_noise_std: std of additive Gaussian noise (default: 0.003)
note that amplitude of noise in unvoiced is decided
by sine_amp
voiced_threshold: threhold to set U/V given F0 (default: 0)
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
F0_sampled (batchsize, length, 1)
Sine_source (batchsize, length, 1)
noise_source (batchsize, length 1)
uv (batchsize, length, 1)
"""
def __init__(self, sampling_rate, harmonic_num=0, sine_amp=0.1,
add_noise_std=0.003, voiced_threshod=0):
super(SourceModuleHnNSF, self).__init__()
self.sine_amp = sine_amp
self.noise_std = add_noise_std
# to produce sine waveforms
self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
sine_amp, add_noise_std, voiced_threshod)
# to merge source harmonics into a single excitation
self.l_linear = torch.nn.Linear(harmonic_num+1, 1)
self.l_tanh = torch.nn.Tanh()
def forward(self, x, upp):
"""
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
F0_sampled (batchsize, length, 1)
Sine_source (batchsize, length, 1)
noise_source (batchsize, length 1)
"""
# source for harmonic branch
sine_wavs, uv, _ = self.l_sin_gen(x, upp)
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
# source for noise branch, in the same shape as uv
# noise = torch.randn_like(uv) * self.sine_amp / 3
return sine_merge
class GeneratorNSF(torch.nn.Module):
def __init__(self, h):
super(GeneratorNSF, self).__init__()
self.num_kernels = len(h.resblock_kernel_sizes)
self.num_upsamples = len(h.upsample_rates)
self.m_source = SourceModuleHnNSF(
sampling_rate=h.sampling_rate,
harmonic_num=8
)
self.noise_convs = nn.ModuleList()
self.conv_pre = weight_norm(Conv1d(h.hifi_dim, h.upsample_initial_channel, 7, 1, padding=3))
resblock = ResBlock1 if h.resblock == '1' else ResBlock2
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
c_cur = h.upsample_initial_channel // (2 ** (i + 1))
self.ups.append(weight_norm(
ConvTranspose1d(h.upsample_initial_channel//(2**i), h.upsample_initial_channel//(2**(i+1)),
k, u, padding=(k-u)//2)))
if i + 1 < len(h.upsample_rates): #
stride_f0 = int(np.prod(h.upsample_rates[i + 1:]))
self.noise_convs.append(Conv1d(
1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=stride_f0 // 2))
else:
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = h.upsample_initial_channel//(2**(i+1))
for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
self.resblocks.append(resblock(h, ch, k, d))
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
self.ups.apply(init_weights)
self.conv_post.apply(init_weights)
self.upp = int(np.prod(h.upsample_rates))
def forward(self, x, f0):
""" `x` as (bs, seq_len, dim), regular hifi assumes input of shape (bs, n_mels, seq_len) """
x = x.permute(0, 2, 1) # (bs, seq_len, dim) --> (bs, dim, seq_len)
har_source = self.m_source(f0, self.upp).transpose(1, 2)
x = self.conv_pre(x)
for i in range(self.num_upsamples):
x = F.leaky_relu(x, LRELU_SLOPE)
x = self.ups[i](x)
x_source = self.noise_convs[i](har_source)
x = x + x_source
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i*self.num_kernels+j](x)
else:
xs += self.resblocks[i*self.num_kernels+j](x)
x = xs / self.num_kernels
x = F.leaky_relu(x)
x = self.conv_post(x)
x = torch.tanh(x)
return x
def remove_weight_norm(self):
print('Removing weight norm...')
for l in self.ups:
remove_weight_norm(l)
for l in self.resblocks:
l.remove_weight_norm()
remove_weight_norm(self.conv_pre)
remove_weight_norm(self.conv_post)
class DiscriminatorP(torch.nn.Module):
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
super(DiscriminatorP, self).__init__()
self.period = period
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
self.convs = nn.ModuleList([
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
])
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
def forward(self, x):
fmap = []
# 1d to 2d
b, c, t = x.shape
if t % self.period != 0: # pad first
n_pad = self.period - (t % self.period)
x = F.pad(x, (0, n_pad), "reflect")
t = t + n_pad
x = x.view(b, c, t // self.period, self.period)
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class MultiPeriodDiscriminator(torch.nn.Module):
def __init__(self):
super(MultiPeriodDiscriminator, self).__init__()
self.discriminators = nn.ModuleList([
DiscriminatorP(2),
DiscriminatorP(3),
DiscriminatorP(5),
DiscriminatorP(7),
DiscriminatorP(11),
])
def forward(self, y, y_hat):
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for i, d in enumerate(self.discriminators):
y_d_r, fmap_r = d(y)
y_d_g, fmap_g = d(y_hat)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
class DiscriminatorS(torch.nn.Module):
def __init__(self, use_spectral_norm=False):
super(DiscriminatorS, self).__init__()
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
self.convs = nn.ModuleList([
norm_f(Conv1d(1, 128, 15, 1, padding=7)),
norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)),
norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)),
norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)),
norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)),
norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)),
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
])
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
def forward(self, x):
fmap = []
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class MultiScaleDiscriminator(torch.nn.Module):
def __init__(self):
super(MultiScaleDiscriminator, self).__init__()
self.discriminators = nn.ModuleList([
DiscriminatorS(use_spectral_norm=True),
DiscriminatorS(),
DiscriminatorS(),
])
self.meanpools = nn.ModuleList([
AvgPool1d(4, 2, padding=2),
AvgPool1d(4, 2, padding=2)
])
def forward(self, y, y_hat):
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for i, d in enumerate(self.discriminators):
if i != 0:
y = self.meanpools[i-1](y)
y_hat = self.meanpools[i-1](y_hat)
y_d_r, fmap_r = d(y)
y_d_g, fmap_g = d(y_hat)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs