Spaces:
Running
on
Zero
Running
on
Zero
""" | |
This code started out as a PyTorch port of Ho et al's diffusion models: | |
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py | |
Docstrings have been added, as well as DDIM sampling and a new collection of beta schedules. | |
""" | |
from model.unet_autoenc import AutoencReturn | |
from config_base import BaseConfig | |
import enum | |
import math | |
import numpy as np | |
import torch as th | |
from model import * | |
from model.nn import mean_flat | |
from typing import NamedTuple, Tuple | |
from choices import * | |
from torch.cuda.amp import autocast | |
import torch.nn.functional as F | |
from dataclasses import dataclass | |
class GaussianDiffusionBeatGansConfig(BaseConfig): | |
gen_type: GenerativeType | |
betas: Tuple[float] | |
model_type: ModelType | |
model_mean_type: ModelMeanType | |
model_var_type: ModelVarType | |
loss_type: LossType | |
rescale_timesteps: bool | |
fp16: bool | |
train_pred_xstart_detach: bool = True | |
def make_sampler(self): | |
return GaussianDiffusionBeatGans(self) | |
class GaussianDiffusionBeatGans: | |
""" | |
Utilities for training and sampling diffusion models. | |
Ported directly from here, and then adapted over time to further experimentation. | |
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42 | |
:param betas: a 1-D numpy array of betas for each diffusion timestep, | |
starting at T and going to 1. | |
:param model_mean_type: a ModelMeanType determining what the model outputs. | |
:param model_var_type: a ModelVarType determining how variance is output. | |
:param loss_type: a LossType determining the loss function to use. | |
:param rescale_timesteps: if True, pass floating point timesteps into the | |
model so that they are always scaled like in the | |
original paper (0 to 1000). | |
""" | |
def __init__(self, conf: GaussianDiffusionBeatGansConfig): | |
self.conf = conf | |
self.model_mean_type = conf.model_mean_type | |
self.model_var_type = conf.model_var_type | |
self.loss_type = conf.loss_type | |
self.rescale_timesteps = conf.rescale_timesteps | |
# Use float64 for accuracy. | |
betas = np.array(conf.betas, dtype=np.float64) | |
self.betas = betas | |
assert len(betas.shape) == 1, "betas must be 1-D" | |
assert (betas > 0).all() and (betas <= 1).all() | |
self.num_timesteps = int(betas.shape[0]) | |
alphas = 1.0 - betas | |
self.alphas_cumprod = np.cumprod(alphas, axis=0) | |
self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1]) | |
self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0) | |
assert self.alphas_cumprod_prev.shape == (self.num_timesteps, ) | |
# calculations for diffusion q(x_t | x_{t-1}) and others | |
self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod) | |
self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod) | |
self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod) | |
self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod) | |
self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - | |
1) | |
# calculations for posterior q(x_{t-1} | x_t, x_0) | |
self.posterior_variance = (betas * (1.0 - self.alphas_cumprod_prev) / | |
(1.0 - self.alphas_cumprod)) | |
# log calculation clipped because the posterior variance is 0 at the | |
# beginning of the diffusion chain. | |
self.posterior_log_variance_clipped = np.log( | |
np.append(self.posterior_variance[1], self.posterior_variance[1:])) | |
self.posterior_mean_coef1 = (betas * | |
np.sqrt(self.alphas_cumprod_prev) / | |
(1.0 - self.alphas_cumprod)) | |
self.posterior_mean_coef2 = ((1.0 - self.alphas_cumprod_prev) * | |
np.sqrt(alphas) / | |
(1.0 - self.alphas_cumprod)) | |
def training_losses(self, | |
model, | |
motion_direction_start: th.Tensor, | |
motion_target: th.Tensor, | |
motion_start: th.Tensor, | |
audio_feats: th.Tensor, | |
face_location: th.Tensor, | |
face_scale: th.Tensor, | |
yaw_pitch_roll: th.Tensor, | |
t: th.Tensor, | |
model_kwargs=None, | |
noise: th.Tensor = None): | |
""" | |
Compute training losses for a single timestep. | |
:param model: the model to evaluate loss on. | |
:param x_start: the [N x C x ...] tensor of inputs. | |
:param t: a batch of timestep indices. | |
:param model_kwargs: if not None, a dict of extra keyword arguments to | |
pass to the model. This can be used for conditioning. | |
:param noise: if specified, the specific Gaussian noise to try to remove. | |
:return: a dict with the key "loss" containing a tensor of shape [N]. | |
Some mean or variance settings may also have other keys. | |
""" | |
if model_kwargs is None: | |
model_kwargs = {} | |
if noise is None: | |
noise = th.randn_like(motion_target) | |
x_t = self.q_sample(motion_target, t, noise=noise) | |
terms = {'x_t': x_t} | |
if self.loss_type in [ | |
LossType.mse, | |
LossType.l1, | |
]: | |
with autocast(self.conf.fp16): | |
# x_t is static wrt. to the diffusion process | |
predicted_direction, predicted_location, predicted_scale, predicted_pose = model.forward(motion_start, | |
motion_direction_start, | |
audio_feats, | |
face_location, | |
face_scale, | |
yaw_pitch_roll, | |
x_t.detach(), | |
self._scale_timesteps(t), | |
control_flag=False) | |
target_types = { | |
ModelMeanType.eps: noise, | |
} | |
target = target_types[self.model_mean_type] | |
assert predicted_direction.shape == target.shape == motion_target.shape | |
if self.loss_type == LossType.mse: | |
if self.model_mean_type == ModelMeanType.eps: | |
direction_loss = mean_flat((target - predicted_direction)**2) | |
# import pdb;pdb.set_trace() | |
location_loss = mean_flat((face_location.unsqueeze(-1) - predicted_location)**2) | |
scale_loss = mean_flat((face_scale - predicted_scale)**2) | |
pose_loss = mean_flat((yaw_pitch_roll - predicted_pose)**2) | |
terms["mse"] = direction_loss + location_loss + scale_loss + pose_loss | |
else: | |
raise NotImplementedError() | |
elif self.loss_type == LossType.l1: | |
# (n, c, h, w) => (n, ) | |
terms["mse"] = mean_flat((target - predicted_direction).abs()) | |
else: | |
raise NotImplementedError() | |
if "vb" in terms: | |
# if learning the variance also use the vlb loss | |
terms["loss"] = terms["mse"] + terms["vb"] | |
else: | |
terms["loss"] = terms["mse"] | |
else: | |
raise NotImplementedError(self.loss_type) | |
return terms | |
def sample(self, | |
model: Model, | |
shape=None, | |
noise=None, | |
cond=None, | |
x_start=None, | |
clip_denoised=True, | |
model_kwargs=None, | |
progress=False): | |
""" | |
Args: | |
x_start: given for the autoencoder | |
""" | |
if model_kwargs is None: | |
model_kwargs = {} | |
if self.conf.model_type.has_autoenc(): | |
model_kwargs['x_start'] = x_start | |
model_kwargs['cond'] = cond | |
if self.conf.gen_type == GenerativeType.ddpm: | |
return self.p_sample_loop(model, | |
shape=shape, | |
noise=noise, | |
clip_denoised=clip_denoised, | |
model_kwargs=model_kwargs, | |
progress=progress) | |
elif self.conf.gen_type == GenerativeType.ddim: | |
return self.ddim_sample_loop(model, | |
shape=shape, | |
noise=noise, | |
clip_denoised=clip_denoised, | |
model_kwargs=model_kwargs, | |
progress=progress) | |
else: | |
raise NotImplementedError() | |
def q_mean_variance(self, x_start, t): | |
""" | |
Get the distribution q(x_t | x_0). | |
:param x_start: the [N x C x ...] tensor of noiseless inputs. | |
:param t: the number of diffusion steps (minus 1). Here, 0 means one step. | |
:return: A tuple (mean, variance, log_variance), all of x_start's shape. | |
""" | |
mean = ( | |
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * | |
x_start) | |
variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, | |
x_start.shape) | |
log_variance = _extract_into_tensor(self.log_one_minus_alphas_cumprod, | |
t, x_start.shape) | |
return mean, variance, log_variance | |
def q_sample(self, x_start, t, noise=None): | |
""" | |
Diffuse the data for a given number of diffusion steps. | |
In other words, sample from q(x_t | x_0). | |
:param x_start: the initial data batch. | |
:param t: the number of diffusion steps (minus 1). Here, 0 means one step. | |
:param noise: if specified, the split-out normal noise. | |
:return: A noisy version of x_start. | |
""" | |
if noise is None: | |
noise = th.randn_like(x_start) | |
assert noise.shape == x_start.shape | |
return ( | |
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * | |
x_start + _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, | |
t, x_start.shape) * noise) | |
def q_posterior_mean_variance(self, x_start, x_t, t): | |
""" | |
Compute the mean and variance of the diffusion posterior: | |
q(x_{t-1} | x_t, x_0) | |
""" | |
assert x_start.shape == x_t.shape | |
posterior_mean = ( | |
_extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * | |
x_start + | |
_extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * | |
x_t) | |
posterior_variance = _extract_into_tensor(self.posterior_variance, t, | |
x_t.shape) | |
posterior_log_variance_clipped = _extract_into_tensor( | |
self.posterior_log_variance_clipped, t, x_t.shape) | |
assert (posterior_mean.shape[0] == posterior_variance.shape[0] == | |
posterior_log_variance_clipped.shape[0] == x_start.shape[0]) | |
return posterior_mean, posterior_variance, posterior_log_variance_clipped | |
def p_mean_variance(self, | |
model, | |
x, | |
t, | |
clip_denoised=True, | |
denoised_fn=None, | |
model_kwargs=None): | |
""" | |
Apply the model to get p(x_{t-1} | x_t), as well as a prediction of | |
the initial x, x_0. | |
:param model: the model, which takes a signal and a batch of timesteps | |
as input. | |
:param x: the [N x C x ...] tensor at time t. | |
:param t: a 1-D Tensor of timesteps. | |
:param clip_denoised: if True, clip the denoised signal into [-1, 1]. | |
:param denoised_fn: if not None, a function which applies to the | |
x_start prediction before it is used to sample. Applies before | |
clip_denoised. | |
:param model_kwargs: if not None, a dict of extra keyword arguments to | |
pass to the model. This can be used for conditioning. | |
:return: a dict with the following keys: | |
- 'mean': the model mean output. | |
- 'variance': the model variance output. | |
- 'log_variance': the log of 'variance'. | |
- 'pred_xstart': the prediction for x_0. | |
""" | |
if model_kwargs is None: | |
model_kwargs = {} | |
motion_start = model_kwargs['start'] | |
audio_feats = model_kwargs['audio_driven'] | |
face_location = model_kwargs['face_location'] | |
face_scale = model_kwargs['face_scale'] | |
yaw_pitch_roll = model_kwargs['yaw_pitch_roll'] | |
motion_direction_start = model_kwargs['motion_direction_start'] | |
control_flag = model_kwargs['control_flag'] | |
B, C = x.shape[:2] | |
assert t.shape == (B, ) | |
with autocast(self.conf.fp16): | |
model_forward, _, _, _ = model.forward(motion_start, | |
motion_direction_start, | |
audio_feats, | |
face_location, | |
face_scale, | |
yaw_pitch_roll, | |
x, | |
self._scale_timesteps(t), | |
control_flag) | |
model_output = model_forward | |
if self.model_var_type in [ | |
ModelVarType.fixed_large, ModelVarType.fixed_small | |
]: | |
model_variance, model_log_variance = { | |
# for fixedlarge, we set the initial (log-)variance like so | |
# to get a better decoder log likelihood. | |
ModelVarType.fixed_large: ( | |
np.append(self.posterior_variance[1], self.betas[1:]), | |
np.log( | |
np.append(self.posterior_variance[1], self.betas[1:])), | |
), | |
ModelVarType.fixed_small: ( | |
self.posterior_variance, | |
self.posterior_log_variance_clipped, | |
), | |
}[self.model_var_type] | |
model_variance = _extract_into_tensor(model_variance, t, x.shape) | |
model_log_variance = _extract_into_tensor(model_log_variance, t, | |
x.shape) | |
def process_xstart(x): | |
if denoised_fn is not None: | |
x = denoised_fn(x) | |
if clip_denoised: | |
return x.clamp(-1, 1) | |
return x | |
if self.model_mean_type in [ | |
ModelMeanType.eps, | |
]: | |
if self.model_mean_type == ModelMeanType.eps: | |
pred_xstart = process_xstart( | |
self._predict_xstart_from_eps(x_t=x, t=t, | |
eps=model_output)) | |
else: | |
raise NotImplementedError() | |
model_mean, _, _ = self.q_posterior_mean_variance( | |
x_start=pred_xstart, x_t=x, t=t) | |
else: | |
raise NotImplementedError(self.model_mean_type) | |
assert (model_mean.shape == model_log_variance.shape == | |
pred_xstart.shape == x.shape) | |
return { | |
"mean": model_mean, | |
"variance": model_variance, | |
"log_variance": model_log_variance, | |
"pred_xstart": pred_xstart, | |
'model_forward': model_forward, | |
} | |
def _predict_xstart_from_eps(self, x_t, t, eps): | |
assert x_t.shape == eps.shape | |
return (_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, | |
x_t.shape) * x_t - | |
_extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, | |
x_t.shape) * eps) | |
def _predict_xstart_from_xprev(self, x_t, t, xprev): | |
assert x_t.shape == xprev.shape | |
return ( # (xprev - coef2*x_t) / coef1 | |
_extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape) | |
* xprev - _extract_into_tensor( | |
self.posterior_mean_coef2 / self.posterior_mean_coef1, t, | |
x_t.shape) * x_t) | |
def _predict_xstart_from_scaled_xstart(self, t, scaled_xstart): | |
return scaled_xstart * _extract_into_tensor( | |
self.sqrt_recip_alphas_cumprod, t, scaled_xstart.shape) | |
def _predict_eps_from_xstart(self, x_t, t, pred_xstart): | |
return (_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, | |
x_t.shape) * x_t - | |
pred_xstart) / _extract_into_tensor( | |
self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) | |
def _predict_eps_from_scaled_xstart(self, x_t, t, scaled_xstart): | |
""" | |
Args: | |
scaled_xstart: is supposed to be sqrt(alphacum) * x_0 | |
""" | |
# 1 / sqrt(1-alphabar) * (x_t - scaled xstart) | |
return (x_t - scaled_xstart) / _extract_into_tensor( | |
self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) | |
def _scale_timesteps(self, t): | |
if self.rescale_timesteps: | |
# scale t to be maxed out at 1000 steps | |
return t.float() * (1000.0 / self.num_timesteps) | |
return t | |
def condition_mean(self, cond_fn, p_mean_var, x, t, model_kwargs=None): | |
""" | |
Compute the mean for the previous step, given a function cond_fn that | |
computes the gradient of a conditional log probability with respect to | |
x. In particular, cond_fn computes grad(log(p(y|x))), and we want to | |
condition on y. | |
This uses the conditioning strategy from Sohl-Dickstein et al. (2015). | |
""" | |
gradient = cond_fn(x, self._scale_timesteps(t), **model_kwargs) | |
new_mean = (p_mean_var["mean"].float() + | |
p_mean_var["variance"] * gradient.float()) | |
return new_mean | |
def condition_score(self, cond_fn, p_mean_var, x, t, model_kwargs=None): | |
""" | |
Compute what the p_mean_variance output would have been, should the | |
model's score function be conditioned by cond_fn. | |
See condition_mean() for details on cond_fn. | |
Unlike condition_mean(), this instead uses the conditioning strategy | |
from Song et al (2020). | |
""" | |
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) | |
eps = self._predict_eps_from_xstart(x, t, p_mean_var["pred_xstart"]) | |
eps = eps - (1 - alpha_bar).sqrt() * cond_fn( | |
x, self._scale_timesteps(t), **model_kwargs) | |
out = p_mean_var.copy() | |
out["pred_xstart"] = self._predict_xstart_from_eps(x, t, eps) | |
out["mean"], _, _ = self.q_posterior_mean_variance( | |
x_start=out["pred_xstart"], x_t=x, t=t) | |
return out | |
def p_sample( | |
self, | |
model: Model, | |
x, | |
t, | |
clip_denoised=True, | |
denoised_fn=None, | |
cond_fn=None, | |
model_kwargs=None, | |
): | |
""" | |
Sample x_{t-1} from the model at the given timestep. | |
:param model: the model to sample from. | |
:param x: the current tensor at x_{t-1}. | |
:param t: the value of t, starting at 0 for the first diffusion step. | |
:param clip_denoised: if True, clip the x_start prediction to [-1, 1]. | |
:param denoised_fn: if not None, a function which applies to the | |
x_start prediction before it is used to sample. | |
:param cond_fn: if not None, this is a gradient function that acts | |
similarly to the model. | |
:param model_kwargs: if not None, a dict of extra keyword arguments to | |
pass to the model. This can be used for conditioning. | |
:return: a dict containing the following keys: | |
- 'sample': a random sample from the model. | |
- 'pred_xstart': a prediction of x_0. | |
""" | |
out = self.p_mean_variance( | |
model, | |
x, | |
t, | |
clip_denoised=clip_denoised, | |
denoised_fn=denoised_fn, | |
model_kwargs=model_kwargs, | |
) | |
noise = th.randn_like(x) | |
nonzero_mask = ((t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) | |
) # no noise when t == 0 | |
if cond_fn is not None: | |
out["mean"] = self.condition_mean(cond_fn, | |
out, | |
x, | |
t, | |
model_kwargs=model_kwargs) | |
sample = out["mean"] + nonzero_mask * th.exp( | |
0.5 * out["log_variance"]) * noise | |
return {"sample": sample, "pred_xstart": out["pred_xstart"]} | |
def p_sample_loop( | |
self, | |
model: Model, | |
shape=None, | |
noise=None, | |
clip_denoised=True, | |
denoised_fn=None, | |
cond_fn=None, | |
model_kwargs=None, | |
device=None, | |
progress=False, | |
): | |
""" | |
Generate samples from the model. | |
:param model: the model module. | |
:param shape: the shape of the samples, (N, C, H, W). | |
:param noise: if specified, the noise from the encoder to sample. | |
Should be of the same shape as `shape`. | |
:param clip_denoised: if True, clip x_start predictions to [-1, 1]. | |
:param denoised_fn: if not None, a function which applies to the | |
x_start prediction before it is used to sample. | |
:param cond_fn: if not None, this is a gradient function that acts | |
similarly to the model. | |
:param model_kwargs: if not None, a dict of extra keyword arguments to | |
pass to the model. This can be used for conditioning. | |
:param device: if specified, the device to create the samples on. | |
If not specified, use a model parameter's device. | |
:param progress: if True, show a tqdm progress bar. | |
:return: a non-differentiable batch of samples. | |
""" | |
final = None | |
for sample in self.p_sample_loop_progressive( | |
model, | |
shape, | |
noise=noise, | |
clip_denoised=clip_denoised, | |
denoised_fn=denoised_fn, | |
cond_fn=cond_fn, | |
model_kwargs=model_kwargs, | |
device=device, | |
progress=progress, | |
): | |
final = sample | |
return final["sample"] | |
def p_sample_loop_progressive( | |
self, | |
model: Model, | |
shape=None, | |
noise=None, | |
clip_denoised=True, | |
denoised_fn=None, | |
cond_fn=None, | |
model_kwargs=None, | |
device=None, | |
progress=False, | |
): | |
""" | |
Generate samples from the model and yield intermediate samples from | |
each timestep of diffusion. | |
Arguments are the same as p_sample_loop(). | |
Returns a generator over dicts, where each dict is the return value of | |
p_sample(). | |
""" | |
if device is None: | |
device = next(model.parameters()).device | |
if noise is not None: | |
img = noise | |
else: | |
assert isinstance(shape, (tuple, list)) | |
img = th.randn(*shape, device=device) | |
indices = list(range(self.num_timesteps))[::-1] | |
if progress: | |
# Lazy import so that we don't depend on tqdm. | |
from tqdm.auto import tqdm | |
indices = tqdm(indices) | |
for i in indices: | |
# t = th.tensor([i] * shape[0], device=device) | |
t = th.tensor([i] * len(img), device=device) | |
with th.no_grad(): | |
out = self.p_sample( | |
model, | |
img, | |
t, | |
clip_denoised=clip_denoised, | |
denoised_fn=denoised_fn, | |
cond_fn=cond_fn, | |
model_kwargs=model_kwargs, | |
) | |
yield out | |
img = out["sample"] | |
def ddim_sample( | |
self, | |
model: Model, | |
x, | |
t, | |
clip_denoised=True, | |
denoised_fn=None, | |
cond_fn=None, | |
model_kwargs=None, | |
eta=0.0, | |
): | |
""" | |
Sample x_{t-1} from the model using DDIM. | |
Same usage as p_sample(). | |
""" | |
out = self.p_mean_variance( | |
model, | |
x, | |
t, | |
clip_denoised=clip_denoised, | |
denoised_fn=denoised_fn, | |
model_kwargs=model_kwargs, | |
) | |
if cond_fn is not None: | |
out = self.condition_score(cond_fn, | |
out, | |
x, | |
t, | |
model_kwargs=model_kwargs) | |
# Usually our model outputs epsilon, but we re-derive it | |
# in case we used x_start or x_prev prediction. | |
eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"]) | |
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) | |
alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, | |
x.shape) | |
sigma = (eta * th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar)) * | |
th.sqrt(1 - alpha_bar / alpha_bar_prev)) | |
# Equation 12. | |
noise = th.randn_like(x) | |
mean_pred = (out["pred_xstart"] * th.sqrt(alpha_bar_prev) + | |
th.sqrt(1 - alpha_bar_prev - sigma**2) * eps) | |
nonzero_mask = ((t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) | |
) # no noise when t == 0 | |
sample = mean_pred + nonzero_mask * sigma * noise | |
return {"sample": sample, "pred_xstart": out["pred_xstart"]} | |
def ddim_reverse_sample( | |
self, | |
model: Model, | |
x, | |
t, | |
clip_denoised=True, | |
denoised_fn=None, | |
model_kwargs=None, | |
eta=0.0, | |
): | |
""" | |
Sample x_{t+1} from the model using DDIM reverse ODE. | |
NOTE: never used ? | |
""" | |
assert eta == 0.0, "Reverse ODE only for deterministic path" | |
out = self.p_mean_variance( | |
model, | |
x, | |
t, | |
clip_denoised=clip_denoised, | |
denoised_fn=denoised_fn, | |
model_kwargs=model_kwargs, | |
) | |
# Usually our model outputs epsilon, but we re-derive it | |
# in case we used x_start or x_prev prediction. | |
eps = (_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape) | |
* x - out["pred_xstart"]) / _extract_into_tensor( | |
self.sqrt_recipm1_alphas_cumprod, t, x.shape) | |
alpha_bar_next = _extract_into_tensor(self.alphas_cumprod_next, t, | |
x.shape) | |
# Equation 12. reversed (DDIM paper) (th.sqrt == torch.sqrt) | |
mean_pred = (out["pred_xstart"] * th.sqrt(alpha_bar_next) + | |
th.sqrt(1 - alpha_bar_next) * eps) | |
return {"sample": mean_pred, "pred_xstart": out["pred_xstart"]} | |
def ddim_reverse_sample_loop( | |
self, | |
model: Model, | |
x, | |
clip_denoised=True, | |
denoised_fn=None, | |
model_kwargs=None, | |
eta=0.0, | |
device=None, | |
): | |
if device is None: | |
device = next(model.parameters()).device | |
sample_t = [] | |
xstart_t = [] | |
T = [] | |
indices = list(range(self.num_timesteps)) | |
sample = x | |
for i in indices: | |
t = th.tensor([i] * len(sample), device=device) | |
with th.no_grad(): | |
out = self.ddim_reverse_sample(model, | |
sample, | |
t=t, | |
clip_denoised=clip_denoised, | |
denoised_fn=denoised_fn, | |
model_kwargs=model_kwargs, | |
eta=eta) | |
sample = out['sample'] | |
# [1, ..., T] | |
sample_t.append(sample) | |
# [0, ...., T-1] | |
xstart_t.append(out['pred_xstart']) | |
# [0, ..., T-1] ready to use | |
T.append(t) | |
return { | |
# xT " | |
'sample': sample, | |
# (1, ..., T) | |
'sample_t': sample_t, | |
# xstart here is a bit different from sampling from T = T-1 to T = 0 | |
# may not be exact | |
'xstart_t': xstart_t, | |
'T': T, | |
} | |
def ddim_sample_loop( | |
self, | |
model: Model, | |
shape=None, | |
noise=None, | |
clip_denoised=True, | |
denoised_fn=None, | |
cond_fn=None, | |
model_kwargs=None, | |
device=None, | |
progress=False, | |
eta=0.0, | |
): | |
""" | |
Generate samples from the model using DDIM. | |
Same usage as p_sample_loop(). | |
""" | |
final = None | |
for sample in self.ddim_sample_loop_progressive( | |
model, | |
shape, | |
noise=noise, | |
clip_denoised=clip_denoised, | |
denoised_fn=denoised_fn, | |
cond_fn=cond_fn, | |
model_kwargs=model_kwargs, | |
device=device, | |
progress=progress, | |
eta=eta, | |
): | |
final = sample | |
return final["sample"] | |
def ddim_sample_loop_progressive( | |
self, | |
model: Model, | |
shape=None, | |
noise=None, | |
clip_denoised=True, | |
denoised_fn=None, | |
cond_fn=None, | |
model_kwargs=None, | |
device=None, | |
progress=False, | |
eta=0.0, | |
): | |
""" | |
Use DDIM to sample from the model and yield intermediate samples from | |
each timestep of DDIM. | |
Same usage as p_sample_loop_progressive(). | |
""" | |
if device is None: | |
device = next(model.parameters()).device | |
if noise is not None: | |
img = noise | |
else: | |
assert isinstance(shape, (tuple, list)) | |
img = th.randn(*shape, device=device) | |
indices = list(range(self.num_timesteps))[::-1] | |
if progress: | |
# Lazy import so that we don't depend on tqdm. | |
from tqdm.auto import tqdm | |
indices = tqdm(indices) | |
for i in indices: | |
if isinstance(model_kwargs, list): | |
# index dependent model kwargs | |
# (T-1, ..., 0) | |
_kwargs = model_kwargs[i] | |
else: | |
_kwargs = model_kwargs | |
t = th.tensor([i] * len(img), device=device) | |
with th.no_grad(): | |
out = self.ddim_sample( | |
model, | |
img, | |
t, | |
clip_denoised=clip_denoised, | |
denoised_fn=denoised_fn, | |
cond_fn=cond_fn, | |
model_kwargs=_kwargs, | |
eta=eta, | |
) | |
out['t'] = t | |
yield out | |
img = out["sample"] | |
def _vb_terms_bpd(self, | |
model: Model, | |
x_start, | |
x_t, | |
t, | |
clip_denoised=True, | |
model_kwargs=None): | |
""" | |
Get a term for the variational lower-bound. | |
The resulting units are bits (rather than nats, as one might expect). | |
This allows for comparison to other papers. | |
:return: a dict with the following keys: | |
- 'output': a shape [N] tensor of NLLs or KLs. | |
- 'pred_xstart': the x_0 predictions. | |
""" | |
true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance( | |
x_start=x_start, x_t=x_t, t=t) | |
out = self.p_mean_variance(model, | |
x_t, | |
t, | |
clip_denoised=clip_denoised, | |
model_kwargs=model_kwargs) | |
kl = normal_kl(true_mean, true_log_variance_clipped, out["mean"], | |
out["log_variance"]) | |
kl = mean_flat(kl) / np.log(2.0) | |
decoder_nll = -discretized_gaussian_log_likelihood( | |
x_start, means=out["mean"], log_scales=0.5 * out["log_variance"]) | |
assert decoder_nll.shape == x_start.shape | |
decoder_nll = mean_flat(decoder_nll) / np.log(2.0) | |
# At the first timestep return the decoder NLL, | |
# otherwise return KL(q(x_{t-1}|x_t,x_0) || p(x_{t-1}|x_t)) | |
output = th.where((t == 0), decoder_nll, kl) | |
return { | |
"output": output, | |
"pred_xstart": out["pred_xstart"], | |
'model_forward': out['model_forward'], | |
} | |
def _prior_bpd(self, x_start): | |
""" | |
Get the prior KL term for the variational lower-bound, measured in | |
bits-per-dim. | |
This term can't be optimized, as it only depends on the encoder. | |
:param x_start: the [N x C x ...] tensor of inputs. | |
:return: a batch of [N] KL values (in bits), one per batch element. | |
""" | |
batch_size = x_start.shape[0] | |
t = th.tensor([self.num_timesteps - 1] * batch_size, | |
device=x_start.device) | |
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) | |
kl_prior = normal_kl(mean1=qt_mean, | |
logvar1=qt_log_variance, | |
mean2=0.0, | |
logvar2=0.0) | |
return mean_flat(kl_prior) / np.log(2.0) | |
def calc_bpd_loop(self, | |
model: Model, | |
x_start, | |
clip_denoised=True, | |
model_kwargs=None): | |
""" | |
Compute the entire variational lower-bound, measured in bits-per-dim, | |
as well as other related quantities. | |
:param model: the model to evaluate loss on. | |
:param x_start: the [N x C x ...] tensor of inputs. | |
:param clip_denoised: if True, clip denoised samples. | |
:param model_kwargs: if not None, a dict of extra keyword arguments to | |
pass to the model. This can be used for conditioning. | |
:return: a dict containing the following keys: | |
- total_bpd: the total variational lower-bound, per batch element. | |
- prior_bpd: the prior term in the lower-bound. | |
- vb: an [N x T] tensor of terms in the lower-bound. | |
- xstart_mse: an [N x T] tensor of x_0 MSEs for each timestep. | |
- mse: an [N x T] tensor of epsilon MSEs for each timestep. | |
""" | |
device = x_start.device | |
batch_size = x_start.shape[0] | |
vb = [] | |
xstart_mse = [] | |
mse = [] | |
for t in list(range(self.num_timesteps))[::-1]: | |
t_batch = th.tensor([t] * batch_size, device=device) | |
noise = th.randn_like(x_start) | |
x_t = self.q_sample(x_start=x_start, t=t_batch, noise=noise) | |
# Calculate VLB term at the current timestep | |
with th.no_grad(): | |
out = self._vb_terms_bpd( | |
model, | |
x_start=x_start, | |
x_t=x_t, | |
t=t_batch, | |
clip_denoised=clip_denoised, | |
model_kwargs=model_kwargs, | |
) | |
vb.append(out["output"]) | |
xstart_mse.append(mean_flat((out["pred_xstart"] - x_start)**2)) | |
eps = self._predict_eps_from_xstart(x_t, t_batch, | |
out["pred_xstart"]) | |
mse.append(mean_flat((eps - noise)**2)) | |
vb = th.stack(vb, dim=1) | |
xstart_mse = th.stack(xstart_mse, dim=1) | |
mse = th.stack(mse, dim=1) | |
prior_bpd = self._prior_bpd(x_start) | |
total_bpd = vb.sum(dim=1) + prior_bpd | |
return { | |
"total_bpd": total_bpd, | |
"prior_bpd": prior_bpd, | |
"vb": vb, | |
"xstart_mse": xstart_mse, | |
"mse": mse, | |
} | |
def _extract_into_tensor(arr, timesteps, broadcast_shape): | |
""" | |
Extract values from a 1-D numpy array for a batch of indices. | |
:param arr: the 1-D numpy array. | |
:param timesteps: a tensor of indices into the array to extract. | |
:param broadcast_shape: a larger shape of K dimensions with the batch | |
dimension equal to the length of timesteps. | |
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims. | |
""" | |
res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float() | |
while len(res.shape) < len(broadcast_shape): | |
res = res[..., None] | |
return res.expand(broadcast_shape) | |
def get_named_beta_schedule(schedule_name, num_diffusion_timesteps): | |
""" | |
Get a pre-defined beta schedule for the given name. | |
The beta schedule library consists of beta schedules which remain similar | |
in the limit of num_diffusion_timesteps. | |
Beta schedules may be added, but should not be removed or changed once | |
they are committed to maintain backwards compatibility. | |
""" | |
if schedule_name == "linear": | |
# Linear schedule from Ho et al, extended to work for any number of | |
# diffusion steps. | |
scale = 1000 / num_diffusion_timesteps | |
beta_start = scale * 0.0001 | |
beta_end = scale * 0.02 | |
return np.linspace(beta_start, | |
beta_end, | |
num_diffusion_timesteps, | |
dtype=np.float64) | |
elif schedule_name == "cosine": | |
return betas_for_alpha_bar( | |
num_diffusion_timesteps, | |
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2)**2, | |
) | |
elif schedule_name == "const0.01": | |
scale = 1000 / num_diffusion_timesteps | |
return np.array([scale * 0.01] * num_diffusion_timesteps, | |
dtype=np.float64) | |
elif schedule_name == "const0.015": | |
scale = 1000 / num_diffusion_timesteps | |
return np.array([scale * 0.015] * num_diffusion_timesteps, | |
dtype=np.float64) | |
elif schedule_name == "const0.008": | |
scale = 1000 / num_diffusion_timesteps | |
return np.array([scale * 0.008] * num_diffusion_timesteps, | |
dtype=np.float64) | |
elif schedule_name == "const0.0065": | |
scale = 1000 / num_diffusion_timesteps | |
return np.array([scale * 0.0065] * num_diffusion_timesteps, | |
dtype=np.float64) | |
elif schedule_name == "const0.0055": | |
scale = 1000 / num_diffusion_timesteps | |
return np.array([scale * 0.0055] * num_diffusion_timesteps, | |
dtype=np.float64) | |
elif schedule_name == "const0.0045": | |
scale = 1000 / num_diffusion_timesteps | |
return np.array([scale * 0.0045] * num_diffusion_timesteps, | |
dtype=np.float64) | |
elif schedule_name == "const0.0035": | |
scale = 1000 / num_diffusion_timesteps | |
return np.array([scale * 0.0035] * num_diffusion_timesteps, | |
dtype=np.float64) | |
elif schedule_name == "const0.0025": | |
scale = 1000 / num_diffusion_timesteps | |
return np.array([scale * 0.0025] * num_diffusion_timesteps, | |
dtype=np.float64) | |
elif schedule_name == "const0.0015": | |
scale = 1000 / num_diffusion_timesteps | |
return np.array([scale * 0.0015] * num_diffusion_timesteps, | |
dtype=np.float64) | |
else: | |
raise NotImplementedError(f"unknown beta schedule: {schedule_name}") | |
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): | |
""" | |
Create a beta schedule that discretizes the given alpha_t_bar function, | |
which defines the cumulative product of (1-beta) over time from t = [0,1]. | |
:param num_diffusion_timesteps: the number of betas to produce. | |
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and | |
produces the cumulative product of (1-beta) up to that | |
part of the diffusion process. | |
:param max_beta: the maximum beta to use; use values lower than 1 to | |
prevent singularities. | |
""" | |
betas = [] | |
for i in range(num_diffusion_timesteps): | |
t1 = i / num_diffusion_timesteps | |
t2 = (i + 1) / num_diffusion_timesteps | |
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) | |
return np.array(betas) | |
def normal_kl(mean1, logvar1, mean2, logvar2): | |
""" | |
Compute the KL divergence between two gaussians. | |
Shapes are automatically broadcasted, so batches can be compared to | |
scalars, among other use cases. | |
""" | |
tensor = None | |
for obj in (mean1, logvar1, mean2, logvar2): | |
if isinstance(obj, th.Tensor): | |
tensor = obj | |
break | |
assert tensor is not None, "at least one argument must be a Tensor" | |
# Force variances to be Tensors. Broadcasting helps convert scalars to | |
# Tensors, but it does not work for th.exp(). | |
logvar1, logvar2 = [ | |
x if isinstance(x, th.Tensor) else th.tensor(x).to(tensor) | |
for x in (logvar1, logvar2) | |
] | |
return 0.5 * (-1.0 + logvar2 - logvar1 + th.exp(logvar1 - logvar2) + | |
((mean1 - mean2)**2) * th.exp(-logvar2)) | |
def approx_standard_normal_cdf(x): | |
""" | |
A fast approximation of the cumulative distribution function of the | |
standard normal. | |
""" | |
return 0.5 * ( | |
1.0 + th.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * th.pow(x, 3)))) | |
def discretized_gaussian_log_likelihood(x, *, means, log_scales): | |
""" | |
Compute the log-likelihood of a Gaussian distribution discretizing to a | |
given image. | |
:param x: the target images. It is assumed that this was uint8 values, | |
rescaled to the range [-1, 1]. | |
:param means: the Gaussian mean Tensor. | |
:param log_scales: the Gaussian log stddev Tensor. | |
:return: a tensor like x of log probabilities (in nats). | |
""" | |
assert x.shape == means.shape == log_scales.shape | |
centered_x = x - means | |
inv_stdv = th.exp(-log_scales) | |
plus_in = inv_stdv * (centered_x + 1.0 / 255.0) | |
cdf_plus = approx_standard_normal_cdf(plus_in) | |
min_in = inv_stdv * (centered_x - 1.0 / 255.0) | |
cdf_min = approx_standard_normal_cdf(min_in) | |
log_cdf_plus = th.log(cdf_plus.clamp(min=1e-12)) | |
log_one_minus_cdf_min = th.log((1.0 - cdf_min).clamp(min=1e-12)) | |
cdf_delta = cdf_plus - cdf_min | |
log_probs = th.where( | |
x < -0.999, | |
log_cdf_plus, | |
th.where(x > 0.999, log_one_minus_cdf_min, | |
th.log(cdf_delta.clamp(min=1e-12))), | |
) | |
assert log_probs.shape == x.shape | |
return log_probs | |
class DummyModel(th.nn.Module): | |
def __init__(self, pred): | |
super().__init__() | |
self.pred = pred | |
def forward(self, *args, **kwargs): | |
return DummyReturn(pred=self.pred) | |
class DummyReturn(NamedTuple): | |
pred: th.Tensor |