Anitalker / app.py
Delik's picture
Update app.py
7f603ac verified
import spaces
import argparse
from datetime import datetime
from pathlib import Path
import numpy as np
import torch
from PIL import Image
import gradio as gr
import shutil
import librosa
import python_speech_features
import time
from LIA_Model import LIA_Model
import os
from tqdm import tqdm
import argparse
import numpy as np
from torchvision import transforms
from templates import *
import argparse
import shutil
from moviepy.editor import *
import librosa
import python_speech_features
import importlib.util
import time
import os
import time
import numpy as np
# Disable Gradio analytics to avoid network-related issues
gr.analytics_enabled = False
def check_package_installed(package_name):
package_spec = importlib.util.find_spec(package_name)
if package_spec is None:
print(f"{package_name} is not installed.")
return False
else:
print(f"{package_name} is installed.")
return True
def frames_to_video(input_path, audio_path, output_path, fps=25):
image_files = [os.path.join(input_path, img) for img in sorted(os.listdir(input_path))]
clips = [ImageClip(m).set_duration(1/fps) for m in image_files]
video = concatenate_videoclips(clips, method="compose")
audio = AudioFileClip(audio_path)
final_video = video.set_audio(audio)
final_video.write_videofile(output_path, fps=fps, codec='libx264', audio_codec='aac')
def load_image(filename, size):
img = Image.open(filename).convert('RGB')
img = img.resize((size, size))
img = np.asarray(img)
img = np.transpose(img, (2, 0, 1)) # 3 x 256 x 256
return img / 255.0
def img_preprocessing(img_path, size):
img = load_image(img_path, size) # [0, 1]
img = torch.from_numpy(img).unsqueeze(0).float() # [0, 1]
imgs_norm = (img - 0.5) * 2.0 # [-1, 1]
return imgs_norm
def saved_image(img_tensor, img_path):
toPIL = transforms.ToPILImage()
img = toPIL(img_tensor.detach().cpu().squeeze(0)) # 使用squeeze(0)来移除批次维度
img.save(img_path)
def main(args):
frames_result_saved_path = os.path.join(args.result_path, 'frames')
os.makedirs(frames_result_saved_path, exist_ok=True)
test_image_name = os.path.splitext(os.path.basename(args.test_image_path))[0]
audio_name = os.path.splitext(os.path.basename(args.test_audio_path))[0]
predicted_video_256_path = os.path.join(args.result_path, f'{test_image_name}-{audio_name}.mp4')
predicted_video_512_path = os.path.join(args.result_path, f'{test_image_name}-{audio_name}_SR.mp4')
#======Loading Stage 1 model=========
lia = LIA_Model(motion_dim=args.motion_dim, fusion_type='weighted_sum')
lia.load_lightning_model(args.stage1_checkpoint_path)
lia.to('cuda')
#============================
conf = ffhq256_autoenc()
conf.seed = args.seed
conf.decoder_layers = args.decoder_layers
conf.infer_type = args.infer_type
conf.motion_dim = args.motion_dim
if args.infer_type == 'mfcc_full_control':
conf.face_location=True
conf.face_scale=True
conf.mfcc = True
elif args.infer_type == 'mfcc_pose_only':
conf.face_location=False
conf.face_scale=False
conf.mfcc = True
elif args.infer_type == 'hubert_pose_only':
conf.face_location=False
conf.face_scale=False
conf.mfcc = False
elif args.infer_type == 'hubert_audio_only':
conf.face_location=False
conf.face_scale=False
conf.mfcc = False
elif args.infer_type == 'hubert_full_control':
conf.face_location=True
conf.face_scale=True
conf.mfcc = False
else:
print('Type NOT Found!')
exit(0)
if not os.path.exists(args.test_image_path):
print(f'{args.test_image_path} does not exist!')
exit(0)
if not os.path.exists(args.test_audio_path):
print(f'{args.test_audio_path} does not exist!')
exit(0)
img_source = img_preprocessing(args.test_image_path, args.image_size).to('cuda')
one_shot_lia_start, one_shot_lia_direction, feats = lia.get_start_direction_code(img_source, img_source, img_source, img_source)
#======Loading Stage 2 model=========
model = LitModel(conf)
state = torch.load(args.stage2_checkpoint_path, map_location='cpu')
model.load_state_dict(state, strict=True)
model.ema_model.eval()
model.ema_model.to('cuda')
#=================================
#======Audio Input=========
if conf.infer_type.startswith('mfcc'):
# MFCC features
wav, sr = librosa.load(args.test_audio_path, sr=16000)
input_values = python_speech_features.mfcc(signal=wav, samplerate=sr, numcep=13, winlen=0.025, winstep=0.01)
d_mfcc_feat = python_speech_features.base.delta(input_values, 1)
d_mfcc_feat2 = python_speech_features.base.delta(input_values, 2)
audio_driven_obj = np.hstack((input_values, d_mfcc_feat, d_mfcc_feat2))
frame_start, frame_end = 0, int(audio_driven_obj.shape[0]/4)
audio_start, audio_end = int(frame_start * 4), int(frame_end * 4) # The video frame is fixed to 25 hz and the audio is fixed to 100 hz
audio_driven = torch.Tensor(audio_driven_obj[audio_start:audio_end,:]).unsqueeze(0).float().to('cuda')
elif conf.infer_type.startswith('hubert'):
# Hubert features
if not os.path.exists(args.test_hubert_path):
if not check_package_installed('transformers'):
print('Please install transformers module first.')
exit(0)
hubert_model_path = 'ckpt/chinese-hubert-large'
if not os.path.exists(hubert_model_path):
print('Please download the hubert weight into the ckpts path first.')
exit(0)
print('You did not extract the audio features in advance, extracting online now, which will increase processing delay')
start_time = time.time()
# load hubert model
from transformers import Wav2Vec2FeatureExtractor, HubertModel
audio_model = HubertModel.from_pretrained(hubert_model_path).to('cuda')
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(hubert_model_path)
audio_model.feature_extractor._freeze_parameters()
audio_model.eval()
# hubert model forward pass
audio, sr = librosa.load(args.test_audio_path, sr=16000)
input_values = feature_extractor(audio, sampling_rate=16000, padding=True, do_normalize=True, return_tensors="pt").input_values
input_values = input_values.to('cuda')
ws_feats = []
with torch.no_grad():
outputs = audio_model(input_values, output_hidden_states=True)
for i in range(len(outputs.hidden_states)):
ws_feats.append(outputs.hidden_states[i].detach().cpu().numpy())
ws_feat_obj = np.array(ws_feats)
ws_feat_obj = np.squeeze(ws_feat_obj, 1)
ws_feat_obj = np.pad(ws_feat_obj, ((0, 0), (0, 1), (0, 0)), 'edge') # align the audio length with video frame
execution_time = time.time() - start_time
print(f"Extraction Audio Feature: {execution_time:.2f} Seconds")
audio_driven_obj = ws_feat_obj
else:
print(f'Using audio feature from path: {args.test_hubert_path}')
audio_driven_obj = np.load(args.test_hubert_path)
frame_start, frame_end = 0, int(audio_driven_obj.shape[1]/2)
audio_start, audio_end = int(frame_start * 2), int(frame_end * 2) # The video frame is fixed to 25 hz and the audio is fixed to 50 hz
audio_driven = torch.Tensor(audio_driven_obj[:,audio_start:audio_end,:]).unsqueeze(0).float().to('cuda')
#============================
# Diffusion Noise
noisyT = torch.randn((1,frame_end, args.motion_dim)).to('cuda')
#======Inputs for Attribute Control=========
if os.path.exists(args.pose_driven_path):
pose_obj = np.load(args.pose_driven_path)
if len(pose_obj.shape) != 2:
print('please check your pose information. The shape must be like (T, 3).')
exit(0)
if pose_obj.shape[1] != 3:
print('please check your pose information. The shape must be like (T, 3).')
exit(0)
if pose_obj.shape[0] >= frame_end:
pose_obj = pose_obj[:frame_end,:]
else:
padding = np.tile(pose_obj[-1, :], (frame_end - pose_obj.shape[0], 1))
pose_obj = np.vstack((pose_obj, padding))
pose_signal = torch.Tensor(pose_obj).unsqueeze(0).to('cuda') / 90 # 90 is for normalization here
else:
yaw_signal = torch.zeros(1, frame_end, 1).to('cuda') + args.pose_yaw
pitch_signal = torch.zeros(1, frame_end, 1).to('cuda') + args.pose_pitch
roll_signal = torch.zeros(1, frame_end, 1).to('cuda') + args.pose_roll
pose_signal = torch.cat((yaw_signal, pitch_signal, roll_signal), dim=-1)
pose_signal = torch.clamp(pose_signal, -1, 1)
face_location_signal = torch.zeros(1, frame_end, 1).to('cuda') + args.face_location
face_scae_signal = torch.zeros(1, frame_end, 1).to('cuda') + args.face_scale
#===========================================
start_time = time.time()
#======Diffusion Denosing Process=========
generated_directions = model.render(one_shot_lia_start, one_shot_lia_direction, audio_driven, face_location_signal, face_scae_signal, pose_signal, noisyT, args.step_T, control_flag=args.control_flag)
#=========================================
execution_time = time.time() - start_time
print(f"Motion Diffusion Model: {execution_time:.2f} Seconds")
generated_directions = generated_directions.detach().cpu().numpy()
start_time = time.time()
#======Rendering images frame-by-frame=========
for pred_index in tqdm(range(generated_directions.shape[1])):
ori_img_recon = lia.render(one_shot_lia_start, torch.Tensor(generated_directions[:,pred_index,:]).to('cuda'), feats)
ori_img_recon = ori_img_recon.clamp(-1, 1)
wav_pred = (ori_img_recon.detach() + 1) / 2
saved_image(wav_pred, os.path.join(frames_result_saved_path, "%06d.png"%(pred_index)))
#==============================================
execution_time = time.time() - start_time
print(f"Renderer Model: {execution_time:.2f} Seconds")
frames_to_video(frames_result_saved_path, args.test_audio_path, predicted_video_256_path)
shutil.rmtree(frames_result_saved_path)
# Enhancer
if args.face_sr and check_package_installed('gfpgan'):
from face_sr.face_enhancer import enhancer_list
import imageio
# Super-resolution
imageio.mimsave(predicted_video_512_path+'.tmp.mp4', enhancer_list(predicted_video_256_path, method='gfpgan', bg_upsampler=None), fps=float(25))
# Merge audio and video
video_clip = VideoFileClip(predicted_video_512_path+'.tmp.mp4')
audio_clip = AudioFileClip(predicted_video_256_path)
final_clip = video_clip.set_audio(audio_clip)
final_clip.write_videofile(predicted_video_512_path, codec='libx264', audio_codec='aac')
os.remove(predicted_video_512_path+'.tmp.mp4')
if args.face_sr:
return predicted_video_256_path, predicted_video_512_path
else:
return predicted_video_256_path, predicted_video_256_path
@spaces.GPU(duration=300)
def generate_video(uploaded_img, uploaded_audio, infer_type,
pose_yaw, pose_pitch, pose_roll, face_location, face_scale, step_T, face_sr, seed):
if uploaded_img is None or uploaded_audio is None:
return None, gr.Markdown("Error: Input image or audio file is empty. Please check and upload both files.")
model_mapping = {
"mfcc_pose_only": "ckpt/stage2_pose_only_mfcc.ckpt",
"mfcc_full_control": "ckpt/stage2_more_controllable_mfcc.ckpt",
"hubert_audio_only": "ckpt/stage2_audio_only_hubert.ckpt",
"hubert_pose_only": "ckpt/stage2_pose_only_hubert.ckpt",
"hubert_full_control": "ckpt/stage2_full_control_hubert.ckpt",
}
stage2_checkpoint_path = model_mapping.get(infer_type, "default_checkpoint.ckpt")
try:
args = argparse.Namespace(
infer_type=infer_type,
test_image_path=uploaded_img,
test_audio_path=uploaded_audio,
test_hubert_path='',
result_path='./outputs/',
stage1_checkpoint_path='ckpt/stage1.ckpt',
stage2_checkpoint_path=stage2_checkpoint_path,
seed=seed,
control_flag=True,
pose_yaw=pose_yaw,
pose_pitch=pose_pitch,
pose_roll=pose_roll,
face_location=face_location,
pose_driven_path='not_supported_in_this_mode',
face_scale=face_scale,
step_T=step_T,
image_size=256,
device='cuda',
motion_dim=20,
decoder_layers=2,
face_sr=face_sr
)
output_256_video_path, output_512_video_path = main(args)
if not os.path.exists(output_256_video_path):
return None, gr.Markdown("Error: Video generation failed. Please check your inputs and try again.")
if output_256_video_path == output_512_video_path:
return gr.Video(value=output_256_video_path), None, gr.Markdown("Video (256*256 only) generated successfully!")
return gr.Video(value=output_256_video_path), gr.Video(value=output_512_video_path), gr.Markdown("Video generated successfully!")
except Exception as e:
return None, None, gr.Markdown(f"Error: An unexpected error occurred - {str(e)}")
default_values = {
"pose_yaw": 0,
"pose_pitch": 0,
"pose_roll": 0,
"face_location": 0.5,
"face_scale": 0.5,
"step_T": 50,
"seed": 0,
}
with gr.Blocks() as demo:
gr.Markdown('# AniTalker')
gr.Markdown('![]()')
gr.Markdown("credits: [X-LANCE](https://github.com/X-LANCE/AniTalker) (creators of the github repository), [Yuhan Xu](https://github.com/yuhanxu01)(webui), Delik")
gr.Markdown("AniTalker: Animate Vivid and Diverse Talking Faces through Identity-Decoupled Facial Motion Encoding. [[arXiv]](https://arxiv.org/abs/2405.03121) [[project]](https://x-lance.github.io/AniTalker/)")
gr.HTML('<a href="https://discord.gg/AQsmBmgEPy"> <img src="https://img.shields.io/discord/1198701940511617164?color=%23738ADB&label=Discord&style=for-the-badge" alt="Discord"> </a>')
with gr.Row():
with gr.Column():
uploaded_img = gr.Image(type="filepath", label="Reference Image")
uploaded_audio = gr.Audio(type="filepath", label="Input Audio")
with gr.Column():
output_video_256 = gr.Video(label="Generated Video (256)")
output_video_512 = gr.Video(label="Generated Video (512)")
output_message = gr.Markdown()
generate_button = gr.Button("Generate Video")
with gr.Accordion("Configuration", open=True):
infer_type = gr.Dropdown(
label="Inference Type",
choices=['mfcc_pose_only', 'mfcc_full_control', 'hubert_audio_only', 'hubert_pose_only'],
value='hubert_audio_only'
)
face_sr = gr.Checkbox(label="Enable Face Super-Resolution (512*512)", value=False)
seed = gr.Number(label="Seed", value=default_values["seed"])
pose_yaw = gr.Slider(label="pose_yaw", minimum=-1, maximum=1, value=default_values["pose_yaw"])
pose_pitch = gr.Slider(label="pose_pitch", minimum=-1, maximum=1, value=default_values["pose_pitch"])
pose_roll = gr.Slider(label="pose_roll", minimum=-1, maximum=1, value=default_values["pose_roll"])
face_location = gr.Slider(label="face_location", minimum=0, maximum=1, value=default_values["face_location"])
face_scale = gr.Slider(label="face_scale", minimum=0, maximum=1, value=default_values["face_scale"])
step_T = gr.Slider(label="step_T", minimum=1, maximum=100, step=1, value=default_values["step_T"])
generate_button.click(
generate_video,
inputs=[
uploaded_img, uploaded_audio, infer_type,
pose_yaw, pose_pitch, pose_roll, face_location, face_scale, step_T, face_sr, seed
],
outputs=[output_video_256, output_video_512, output_message]
)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='EchoMimic')
parser.add_argument('--server_name', type=str, default='0.0.0.0', help='Server name')
parser.add_argument('--server_port', type=int, default=3001, help='Server port')
args = parser.parse_args()
demo.launch()