Spaces:
Runtime error
Runtime error
import os | |
import pdb | |
import time | |
import torch | |
import gradio as gr | |
import numpy as np | |
import argparse | |
import subprocess | |
from run_on_video import clip, vid2clip, txt2clip | |
parser = argparse.ArgumentParser(description='') | |
parser.add_argument('--save_dir', type=str, default='./tmp') | |
parser.add_argument('--resume', type=str, default='./results/omni/model_best.ckpt') | |
parser.add_argument("--gpu_id", type=int, default=0) | |
args = parser.parse_args() | |
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_id) | |
################################# | |
model_version = "ViT-B/32" | |
output_feat_size = 512 | |
clip_len = 2 | |
overwrite = True | |
num_decoding_thread = 4 | |
half_precision = False | |
clip_model, _ = clip.load(model_version, device=args.gpu_id, jit=False) | |
import logging | |
import torch.backends.cudnn as cudnn | |
from main.config import TestOptions, setup_model | |
from utils.basic_utils import l2_normalize_np_array | |
logger = logging.getLogger(__name__) | |
logging.basicConfig(format="%(asctime)s.%(msecs)03d:%(levelname)s:%(name)s - %(message)s", | |
datefmt="%Y-%m-%d %H:%M:%S", | |
level=logging.INFO) | |
def load_model(): | |
logger.info("Setup config, data and model...") | |
opt = TestOptions().parse(args) | |
# pdb.set_trace() | |
cudnn.benchmark = True | |
cudnn.deterministic = False | |
if opt.lr_warmup > 0: | |
total_steps = opt.n_epoch | |
warmup_steps = opt.lr_warmup if opt.lr_warmup > 1 else int(opt.lr_warmup * total_steps) | |
opt.lr_warmup = [warmup_steps, total_steps] | |
model, criterion, _, _ = setup_model(opt) | |
return model | |
vtg_model = load_model() | |
def convert_to_hms(seconds): | |
return time.strftime('%H:%M:%S', time.gmtime(seconds)) | |
def load_data(save_dir): | |
vid = np.load(os.path.join(save_dir, 'vid.npz'))['features'].astype(np.float32) | |
txt = np.load(os.path.join(save_dir, 'txt.npz'))['features'].astype(np.float32) | |
vid = torch.from_numpy(l2_normalize_np_array(vid)) | |
txt = torch.from_numpy(l2_normalize_np_array(txt)) | |
clip_len = 2 | |
ctx_l = vid.shape[0] | |
timestamp = ( (torch.arange(0, ctx_l) + clip_len / 2) / ctx_l).unsqueeze(1).repeat(1, 2) | |
if True: | |
tef_st = torch.arange(0, ctx_l, 1.0) / ctx_l | |
tef_ed = tef_st + 1.0 / ctx_l | |
tef = torch.stack([tef_st, tef_ed], dim=1) # (Lv, 2) | |
vid = torch.cat([vid, tef], dim=1) # (Lv, Dv+2) | |
src_vid = vid.unsqueeze(0).cuda() | |
src_txt = txt.unsqueeze(0).cuda() | |
src_vid_mask = torch.ones(src_vid.shape[0], src_vid.shape[1]).cuda() | |
src_txt_mask = torch.ones(src_txt.shape[0], src_txt.shape[1]).cuda() | |
return src_vid, src_txt, src_vid_mask, src_txt_mask, timestamp, ctx_l | |
def forward(model, save_dir, query): | |
src_vid, src_txt, src_vid_mask, src_txt_mask, timestamp, ctx_l = load_data(save_dir) | |
src_vid = src_vid.cuda(args.gpu_id) | |
src_txt = src_txt.cuda(args.gpu_id) | |
src_vid_mask = src_vid_mask.cuda(args.gpu_id) | |
src_txt_mask = src_txt_mask.cuda(args.gpu_id) | |
model.eval() | |
with torch.no_grad(): | |
output = model(src_vid=src_vid, src_txt=src_txt, src_vid_mask=src_vid_mask, src_txt_mask=src_txt_mask) | |
# prepare the model prediction | |
pred_logits = output['pred_logits'][0].cpu() | |
pred_spans = output['pred_spans'][0].cpu() | |
pred_saliency = output['saliency_scores'].cpu() | |
# prepare the model prediction | |
pred_windows = (pred_spans + timestamp) * ctx_l * clip_len | |
pred_confidence = pred_logits | |
# grounding | |
top1_window = pred_windows[torch.argmax(pred_confidence)].tolist() | |
top5_values, top5_indices = torch.topk(pred_confidence.flatten(), k=5) | |
top5_windows = pred_windows[top5_indices].tolist() | |
# print(f"The video duration is {convert_to_hms(src_vid.shape[1]*clip_len)}.") | |
q_response = f"For query: {query}" | |
mr_res = " - ".join([convert_to_hms(int(i)) for i in top1_window]) | |
mr_response = f"The Top-1 interval is: {mr_res}" | |
hl_res = convert_to_hms(torch.argmax(pred_saliency) * clip_len) | |
hl_response = f"The Top-1 highlight is: {hl_res}" | |
return '\n'.join([q_response, mr_response, hl_response]) | |
def extract_vid(vid_path, state): | |
history = state['messages'] | |
vid_features = vid2clip(clip_model, vid_path, args.save_dir) | |
history.append({"role": "user", "content": "Finish extracting video features."}) | |
history.append({"role": "system", "content": "Please Enter the text query."}) | |
chat_messages = [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history),2)] | |
return '', chat_messages, state | |
def extract_txt(txt): | |
txt_features = txt2clip(clip_model, txt, args.save_dir) | |
return | |
def download_video(url, save_dir='./examples', size=768): | |
save_path = f'{save_dir}/{url}.mp4' | |
cmd = f'yt-dlp -S ext:mp4:m4a --throttled-rate 5M -f "best[width<={size}][height<={size}]" --output {save_path} --merge-output-format mp4 https://www.youtube.com/embed/{url}' | |
if not os.path.exists(save_path): | |
try: | |
subprocess.call(cmd, shell=True) | |
except: | |
return None | |
return save_path | |
def get_empty_state(): | |
return {"total_tokens": 0, "messages": []} | |
def submit_message(prompt, state): | |
history = state['messages'] | |
if not prompt: | |
return gr.update(value=''), [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)], state | |
prompt_msg = { "role": "user", "content": prompt } | |
try: | |
history.append(prompt_msg) | |
# answer = vlogger.chat2video(prompt) | |
# answer = prompt | |
extract_txt(prompt) | |
answer = forward(vtg_model, args.save_dir, prompt) | |
history.append({"role": "system", "content": answer}) | |
except Exception as e: | |
history.append(prompt_msg) | |
history.append({ | |
"role": "system", | |
"content": f"Error: {e}" | |
}) | |
chat_messages = [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)] | |
return '', chat_messages, state | |
def clear_conversation(): | |
return gr.update(value=None, visible=True), gr.update(value=None, interactive=True), None, gr.update(value=None, visible=True), get_empty_state() | |
def subvid_fn(vid): | |
save_path = download_video(vid) | |
return gr.update(value=save_path) | |
css = """ | |
#col-container {max-width: 80%; margin-left: auto; margin-right: auto;} | |
#video_inp {min-height: 100px} | |
#chatbox {min-height: 100px;} | |
#header {text-align: center;} | |
#hint {font-size: 1.0em; padding: 0.5em; margin: 0;} | |
.message { font-size: 1.2em; } | |
""" | |
with gr.Blocks(css=css) as demo: | |
state = gr.State(get_empty_state()) | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown("""## 🤖️ UniVTG: Towards Unified Video-Language Temporal Grounding | |
Given a video and text query, return relevant window and highlight. | |
https://github.com/showlab/UniVTG/""", | |
elem_id="header") | |
with gr.Row(): | |
with gr.Column(): | |
video_inp = gr.Video(label="video_input") | |
gr.Markdown("👋 **Step1**: Select a video in Examples (bottom) or input youtube video_id in this textbox, *e.g.* *G7zJK6lcbyU* for https://www.youtube.com/watch?v=G7zJK6lcbyU", elem_id="hint") | |
with gr.Row(): | |
video_id = gr.Textbox(value="", placeholder="Youtube video url", show_label=False) | |
vidsub_btn = gr.Button("(Optional) Submit Youtube id") | |
with gr.Column(): | |
vid_ext = gr.Button("Step2: Extract video feature, may takes a while") | |
# vlog_outp = gr.Textbox(label="Document output", lines=40) | |
total_tokens_str = gr.Markdown(elem_id="total_tokens_str") | |
chatbot = gr.Chatbot(elem_id="chatbox") | |
input_message = gr.Textbox(show_label=False, placeholder="Enter text query and press enter", visible=True).style(container=False) | |
btn_submit = gr.Button("Step3: Enter your text query") | |
btn_clear_conversation = gr.Button("🔃 Clear") | |
examples = gr.Examples( | |
examples=[ | |
["./examples/youtube.mp4"], | |
["./examples/charades.mp4"], | |
["./examples/ego4d.mp4"], | |
], | |
inputs=[video_inp], | |
) | |
gr.HTML('''<br><br><br><center>You can duplicate this Space to skip the queue:<a href="https://huggingface.co/spaces/anzorq/chatgpt-demo?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a><br></center>''') | |
btn_submit.click(submit_message, [input_message, state], [input_message, chatbot]) | |
input_message.submit(submit_message, [input_message, state], [input_message, chatbot]) | |
# btn_clear_conversation.click(clear_conversation, [], [input_message, video_inp, chatbot, vlog_outp, state]) | |
btn_clear_conversation.click(clear_conversation, [], [input_message, video_inp, chatbot, state]) | |
vid_ext.click(extract_vid, [video_inp, state], [input_message, chatbot]) | |
vidsub_btn.click(subvid_fn, [video_id], [video_inp]) | |
demo.load(queur=False) | |
demo.queue(concurrency_count=10) | |
# demo.launch(height='800px', server_port=2253, debug=True, share=True) | |
demo.launch(height='800px') | |