tango2 / diffusers /tests /test_pipelines_flax.py
hungchiayu1
initial commit
ffead1e
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import tempfile
import unittest
import numpy as np
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from jax import pmap
from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline
@require_flax
class DownloadTests(unittest.TestCase):
def test_download_only_pytorch(self):
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
_ = FlaxDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
)
all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname, os.listdir(tmpdirname)[0], "snapshots"))]
files = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a PyTorch file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin
assert not any(f.endswith(".bin") for f in files)
@slow
@require_flax
class FlaxPipelineTests(unittest.TestCase):
def test_dummy_all_tpus(self):
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None
)
prompt = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
prng_seed = jax.random.PRNGKey(0)
num_inference_steps = 4
num_samples = jax.device_count()
prompt = num_samples * [prompt]
prompt_ids = pipeline.prepare_inputs(prompt)
p_sample = pmap(pipeline.__call__, static_broadcasted_argnums=(3,))
# shard inputs and rng
params = replicate(params)
prng_seed = jax.random.split(prng_seed, num_samples)
prompt_ids = shard(prompt_ids)
images = p_sample(prompt_ids, params, prng_seed, num_inference_steps).images
assert images.shape == (num_samples, 1, 64, 64, 3)
if jax.device_count() == 8:
assert np.abs(np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 3.1111548) < 1e-3
assert np.abs(np.abs(images, dtype=np.float32).sum() - 199746.95) < 5e-1
images_pil = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:])))
assert len(images_pil) == num_samples
def test_stable_diffusion_v1_4(self):
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", revision="flax", safety_checker=None
)
prompt = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
prng_seed = jax.random.PRNGKey(0)
num_inference_steps = 50
num_samples = jax.device_count()
prompt = num_samples * [prompt]
prompt_ids = pipeline.prepare_inputs(prompt)
p_sample = pmap(pipeline.__call__, static_broadcasted_argnums=(3,))
# shard inputs and rng
params = replicate(params)
prng_seed = jax.random.split(prng_seed, num_samples)
prompt_ids = shard(prompt_ids)
images = p_sample(prompt_ids, params, prng_seed, num_inference_steps).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.05652401)) < 1e-3
assert np.abs((np.abs(images, dtype=np.float32).sum() - 2383808.2)) < 5e-1
def test_stable_diffusion_v1_4_bfloat_16(self):
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", revision="bf16", dtype=jnp.bfloat16, safety_checker=None
)
prompt = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
prng_seed = jax.random.PRNGKey(0)
num_inference_steps = 50
num_samples = jax.device_count()
prompt = num_samples * [prompt]
prompt_ids = pipeline.prepare_inputs(prompt)
p_sample = pmap(pipeline.__call__, static_broadcasted_argnums=(3,))
# shard inputs and rng
params = replicate(params)
prng_seed = jax.random.split(prng_seed, num_samples)
prompt_ids = shard(prompt_ids)
images = p_sample(prompt_ids, params, prng_seed, num_inference_steps).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.06652832)) < 1e-3
assert np.abs((np.abs(images, dtype=np.float32).sum() - 2384849.8)) < 5e-1
def test_stable_diffusion_v1_4_bfloat_16_with_safety(self):
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", revision="bf16", dtype=jnp.bfloat16
)
prompt = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
prng_seed = jax.random.PRNGKey(0)
num_inference_steps = 50
num_samples = jax.device_count()
prompt = num_samples * [prompt]
prompt_ids = pipeline.prepare_inputs(prompt)
# shard inputs and rng
params = replicate(params)
prng_seed = jax.random.split(prng_seed, num_samples)
prompt_ids = shard(prompt_ids)
images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.06652832)) < 1e-3
assert np.abs((np.abs(images, dtype=np.float32).sum() - 2384849.8)) < 5e-1
def test_stable_diffusion_v1_4_bfloat_16_ddim(self):
scheduler = FlaxDDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
set_alpha_to_one=False,
steps_offset=1,
)
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
revision="bf16",
dtype=jnp.bfloat16,
scheduler=scheduler,
safety_checker=None,
)
scheduler_state = scheduler.create_state()
params["scheduler"] = scheduler_state
prompt = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
prng_seed = jax.random.PRNGKey(0)
num_inference_steps = 50
num_samples = jax.device_count()
prompt = num_samples * [prompt]
prompt_ids = pipeline.prepare_inputs(prompt)
p_sample = pmap(pipeline.__call__, static_broadcasted_argnums=(3,))
# shard inputs and rng
params = replicate(params)
prng_seed = jax.random.split(prng_seed, num_samples)
prompt_ids = shard(prompt_ids)
images = p_sample(prompt_ids, params, prng_seed, num_inference_steps).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.045043945)) < 1e-3
assert np.abs((np.abs(images, dtype=np.float32).sum() - 2347693.5)) < 5e-1