Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2023 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import tempfile | |
| import unittest | |
| from diffusers import ( | |
| DDIMScheduler, | |
| DDPMScheduler, | |
| DPMSolverMultistepScheduler, | |
| EulerAncestralDiscreteScheduler, | |
| EulerDiscreteScheduler, | |
| PNDMScheduler, | |
| logging, | |
| ) | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.utils.testing_utils import CaptureLogger | |
| class SampleObject(ConfigMixin): | |
| config_name = "config.json" | |
| def __init__( | |
| self, | |
| a=2, | |
| b=5, | |
| c=(2, 5), | |
| d="for diffusion", | |
| e=[1, 3], | |
| ): | |
| pass | |
| class SampleObject2(ConfigMixin): | |
| config_name = "config.json" | |
| def __init__( | |
| self, | |
| a=2, | |
| b=5, | |
| c=(2, 5), | |
| d="for diffusion", | |
| f=[1, 3], | |
| ): | |
| pass | |
| class SampleObject3(ConfigMixin): | |
| config_name = "config.json" | |
| def __init__( | |
| self, | |
| a=2, | |
| b=5, | |
| c=(2, 5), | |
| d="for diffusion", | |
| e=[1, 3], | |
| f=[1, 3], | |
| ): | |
| pass | |
| class ConfigTester(unittest.TestCase): | |
| def test_load_not_from_mixin(self): | |
| with self.assertRaises(ValueError): | |
| ConfigMixin.load_config("dummy_path") | |
| def test_register_to_config(self): | |
| obj = SampleObject() | |
| config = obj.config | |
| assert config["a"] == 2 | |
| assert config["b"] == 5 | |
| assert config["c"] == (2, 5) | |
| assert config["d"] == "for diffusion" | |
| assert config["e"] == [1, 3] | |
| # init ignore private arguments | |
| obj = SampleObject(_name_or_path="lalala") | |
| config = obj.config | |
| assert config["a"] == 2 | |
| assert config["b"] == 5 | |
| assert config["c"] == (2, 5) | |
| assert config["d"] == "for diffusion" | |
| assert config["e"] == [1, 3] | |
| # can override default | |
| obj = SampleObject(c=6) | |
| config = obj.config | |
| assert config["a"] == 2 | |
| assert config["b"] == 5 | |
| assert config["c"] == 6 | |
| assert config["d"] == "for diffusion" | |
| assert config["e"] == [1, 3] | |
| # can use positional arguments. | |
| obj = SampleObject(1, c=6) | |
| config = obj.config | |
| assert config["a"] == 1 | |
| assert config["b"] == 5 | |
| assert config["c"] == 6 | |
| assert config["d"] == "for diffusion" | |
| assert config["e"] == [1, 3] | |
| def test_save_load(self): | |
| obj = SampleObject() | |
| config = obj.config | |
| assert config["a"] == 2 | |
| assert config["b"] == 5 | |
| assert config["c"] == (2, 5) | |
| assert config["d"] == "for diffusion" | |
| assert config["e"] == [1, 3] | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| obj.save_config(tmpdirname) | |
| new_obj = SampleObject.from_config(SampleObject.load_config(tmpdirname)) | |
| new_config = new_obj.config | |
| # unfreeze configs | |
| config = dict(config) | |
| new_config = dict(new_config) | |
| assert config.pop("c") == (2, 5) # instantiated as tuple | |
| assert new_config.pop("c") == [2, 5] # saved & loaded as list because of json | |
| assert config == new_config | |
| def test_load_ddim_from_pndm(self): | |
| logger = logging.get_logger("diffusers.configuration_utils") | |
| with CaptureLogger(logger) as cap_logger: | |
| ddim = DDIMScheduler.from_pretrained( | |
| "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler" | |
| ) | |
| assert ddim.__class__ == DDIMScheduler | |
| # no warning should be thrown | |
| assert cap_logger.out == "" | |
| def test_load_euler_from_pndm(self): | |
| logger = logging.get_logger("diffusers.configuration_utils") | |
| with CaptureLogger(logger) as cap_logger: | |
| euler = EulerDiscreteScheduler.from_pretrained( | |
| "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler" | |
| ) | |
| assert euler.__class__ == EulerDiscreteScheduler | |
| # no warning should be thrown | |
| assert cap_logger.out == "" | |
| def test_load_euler_ancestral_from_pndm(self): | |
| logger = logging.get_logger("diffusers.configuration_utils") | |
| with CaptureLogger(logger) as cap_logger: | |
| euler = EulerAncestralDiscreteScheduler.from_pretrained( | |
| "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler" | |
| ) | |
| assert euler.__class__ == EulerAncestralDiscreteScheduler | |
| # no warning should be thrown | |
| assert cap_logger.out == "" | |
| def test_load_pndm(self): | |
| logger = logging.get_logger("diffusers.configuration_utils") | |
| with CaptureLogger(logger) as cap_logger: | |
| pndm = PNDMScheduler.from_pretrained( | |
| "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler" | |
| ) | |
| assert pndm.__class__ == PNDMScheduler | |
| # no warning should be thrown | |
| assert cap_logger.out == "" | |
| def test_overwrite_config_on_load(self): | |
| logger = logging.get_logger("diffusers.configuration_utils") | |
| with CaptureLogger(logger) as cap_logger: | |
| ddpm = DDPMScheduler.from_pretrained( | |
| "hf-internal-testing/tiny-stable-diffusion-torch", | |
| subfolder="scheduler", | |
| prediction_type="sample", | |
| beta_end=8, | |
| ) | |
| with CaptureLogger(logger) as cap_logger_2: | |
| ddpm_2 = DDPMScheduler.from_pretrained("google/ddpm-celebahq-256", beta_start=88) | |
| assert ddpm.__class__ == DDPMScheduler | |
| assert ddpm.config.prediction_type == "sample" | |
| assert ddpm.config.beta_end == 8 | |
| assert ddpm_2.config.beta_start == 88 | |
| # no warning should be thrown | |
| assert cap_logger.out == "" | |
| assert cap_logger_2.out == "" | |
| def test_load_dpmsolver(self): | |
| logger = logging.get_logger("diffusers.configuration_utils") | |
| with CaptureLogger(logger) as cap_logger: | |
| dpm = DPMSolverMultistepScheduler.from_pretrained( | |
| "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler" | |
| ) | |
| assert dpm.__class__ == DPMSolverMultistepScheduler | |
| # no warning should be thrown | |
| assert cap_logger.out == "" | |