Spaces:
Runtime error
Runtime error
| import argparse | |
| import logging | |
| import math | |
| import os | |
| import random | |
| from pathlib import Path | |
| import jax | |
| import jax.numpy as jnp | |
| import numpy as np | |
| import optax | |
| import PIL | |
| import torch | |
| import torch.utils.checkpoint | |
| import transformers | |
| from flax import jax_utils | |
| from flax.training import train_state | |
| from flax.training.common_utils import shard | |
| from huggingface_hub import create_repo, upload_folder | |
| # TODO: remove and import from diffusers.utils when the new version of diffusers is released | |
| from packaging import version | |
| from PIL import Image | |
| from torch.utils.data import Dataset | |
| from torchvision import transforms | |
| from tqdm.auto import tqdm | |
| from transformers import CLIPImageProcessor, CLIPTokenizer, FlaxCLIPTextModel, set_seed | |
| from diffusers import ( | |
| FlaxAutoencoderKL, | |
| FlaxDDPMScheduler, | |
| FlaxPNDMScheduler, | |
| FlaxStableDiffusionPipeline, | |
| FlaxUNet2DConditionModel, | |
| ) | |
| from diffusers.pipelines.stable_diffusion import FlaxStableDiffusionSafetyChecker | |
| from diffusers.utils import check_min_version | |
| if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"): | |
| PIL_INTERPOLATION = { | |
| "linear": PIL.Image.Resampling.BILINEAR, | |
| "bilinear": PIL.Image.Resampling.BILINEAR, | |
| "bicubic": PIL.Image.Resampling.BICUBIC, | |
| "lanczos": PIL.Image.Resampling.LANCZOS, | |
| "nearest": PIL.Image.Resampling.NEAREST, | |
| } | |
| else: | |
| PIL_INTERPOLATION = { | |
| "linear": PIL.Image.LINEAR, | |
| "bilinear": PIL.Image.BILINEAR, | |
| "bicubic": PIL.Image.BICUBIC, | |
| "lanczos": PIL.Image.LANCZOS, | |
| "nearest": PIL.Image.NEAREST, | |
| } | |
| # ------------------------------------------------------------------------------ | |
| # Will error if the minimal version of diffusers is not installed. Remove at your own risks. | |
| check_min_version("0.15.0.dev0") | |
| logger = logging.getLogger(__name__) | |
| def parse_args(): | |
| parser = argparse.ArgumentParser(description="Simple example of a training script.") | |
| parser.add_argument( | |
| "--pretrained_model_name_or_path", | |
| type=str, | |
| default=None, | |
| required=True, | |
| help="Path to pretrained model or model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--tokenizer_name", | |
| type=str, | |
| default=None, | |
| help="Pretrained tokenizer name or path if not the same as model_name", | |
| ) | |
| parser.add_argument( | |
| "--train_data_dir", type=str, default=None, required=True, help="A folder containing the training data." | |
| ) | |
| parser.add_argument( | |
| "--placeholder_token", | |
| type=str, | |
| default=None, | |
| required=True, | |
| help="A token to use as a placeholder for the concept.", | |
| ) | |
| parser.add_argument( | |
| "--initializer_token", type=str, default=None, required=True, help="A token to use as initializer word." | |
| ) | |
| parser.add_argument("--learnable_property", type=str, default="object", help="Choose between 'object' and 'style'") | |
| parser.add_argument("--repeats", type=int, default=100, help="How many times to repeat the training data.") | |
| parser.add_argument( | |
| "--output_dir", | |
| type=str, | |
| default="text-inversion-model", | |
| help="The output directory where the model predictions and checkpoints will be written.", | |
| ) | |
| parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.") | |
| parser.add_argument( | |
| "--resolution", | |
| type=int, | |
| default=512, | |
| help=( | |
| "The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
| " resolution" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution." | |
| ) | |
| parser.add_argument( | |
| "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." | |
| ) | |
| parser.add_argument("--num_train_epochs", type=int, default=100) | |
| parser.add_argument( | |
| "--max_train_steps", | |
| type=int, | |
| default=5000, | |
| help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | |
| ) | |
| parser.add_argument( | |
| "--save_steps", | |
| type=int, | |
| default=500, | |
| help="Save learned_embeds.bin every X updates steps.", | |
| ) | |
| parser.add_argument( | |
| "--learning_rate", | |
| type=float, | |
| default=1e-4, | |
| help="Initial learning rate (after the potential warmup period) to use.", | |
| ) | |
| parser.add_argument( | |
| "--scale_lr", | |
| action="store_true", | |
| default=True, | |
| help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | |
| ) | |
| parser.add_argument( | |
| "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." | |
| ) | |
| parser.add_argument( | |
| "--revision", | |
| type=str, | |
| default=None, | |
| required=False, | |
| help="Revision of pretrained model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--lr_scheduler", | |
| type=str, | |
| default="constant", | |
| help=( | |
| 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | |
| ' "constant", "constant_with_warmup"]' | |
| ), | |
| ) | |
| parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") | |
| parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") | |
| parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") | |
| parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") | |
| parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") | |
| parser.add_argument( | |
| "--use_auth_token", | |
| action="store_true", | |
| help=( | |
| "Will use the token generated when running `huggingface-cli login` (necessary to use this script with" | |
| " private models)." | |
| ), | |
| ) | |
| parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") | |
| parser.add_argument( | |
| "--hub_model_id", | |
| type=str, | |
| default=None, | |
| help="The name of the repository to keep in sync with the local `output_dir`.", | |
| ) | |
| parser.add_argument( | |
| "--logging_dir", | |
| type=str, | |
| default="logs", | |
| help=( | |
| "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" | |
| " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." | |
| ), | |
| ) | |
| parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") | |
| args = parser.parse_args() | |
| env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) | |
| if env_local_rank != -1 and env_local_rank != args.local_rank: | |
| args.local_rank = env_local_rank | |
| if args.train_data_dir is None: | |
| raise ValueError("You must specify a train data directory.") | |
| return args | |
| imagenet_templates_small = [ | |
| "a photo of a {}", | |
| "a rendering of a {}", | |
| "a cropped photo of the {}", | |
| "the photo of a {}", | |
| "a photo of a clean {}", | |
| "a photo of a dirty {}", | |
| "a dark photo of the {}", | |
| "a photo of my {}", | |
| "a photo of the cool {}", | |
| "a close-up photo of a {}", | |
| "a bright photo of the {}", | |
| "a cropped photo of a {}", | |
| "a photo of the {}", | |
| "a good photo of the {}", | |
| "a photo of one {}", | |
| "a close-up photo of the {}", | |
| "a rendition of the {}", | |
| "a photo of the clean {}", | |
| "a rendition of a {}", | |
| "a photo of a nice {}", | |
| "a good photo of a {}", | |
| "a photo of the nice {}", | |
| "a photo of the small {}", | |
| "a photo of the weird {}", | |
| "a photo of the large {}", | |
| "a photo of a cool {}", | |
| "a photo of a small {}", | |
| ] | |
| imagenet_style_templates_small = [ | |
| "a painting in the style of {}", | |
| "a rendering in the style of {}", | |
| "a cropped painting in the style of {}", | |
| "the painting in the style of {}", | |
| "a clean painting in the style of {}", | |
| "a dirty painting in the style of {}", | |
| "a dark painting in the style of {}", | |
| "a picture in the style of {}", | |
| "a cool painting in the style of {}", | |
| "a close-up painting in the style of {}", | |
| "a bright painting in the style of {}", | |
| "a cropped painting in the style of {}", | |
| "a good painting in the style of {}", | |
| "a close-up painting in the style of {}", | |
| "a rendition in the style of {}", | |
| "a nice painting in the style of {}", | |
| "a small painting in the style of {}", | |
| "a weird painting in the style of {}", | |
| "a large painting in the style of {}", | |
| ] | |
| class TextualInversionDataset(Dataset): | |
| def __init__( | |
| self, | |
| data_root, | |
| tokenizer, | |
| learnable_property="object", # [object, style] | |
| size=512, | |
| repeats=100, | |
| interpolation="bicubic", | |
| flip_p=0.5, | |
| set="train", | |
| placeholder_token="*", | |
| center_crop=False, | |
| ): | |
| self.data_root = data_root | |
| self.tokenizer = tokenizer | |
| self.learnable_property = learnable_property | |
| self.size = size | |
| self.placeholder_token = placeholder_token | |
| self.center_crop = center_crop | |
| self.flip_p = flip_p | |
| self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root)] | |
| self.num_images = len(self.image_paths) | |
| self._length = self.num_images | |
| if set == "train": | |
| self._length = self.num_images * repeats | |
| self.interpolation = { | |
| "linear": PIL_INTERPOLATION["linear"], | |
| "bilinear": PIL_INTERPOLATION["bilinear"], | |
| "bicubic": PIL_INTERPOLATION["bicubic"], | |
| "lanczos": PIL_INTERPOLATION["lanczos"], | |
| }[interpolation] | |
| self.templates = imagenet_style_templates_small if learnable_property == "style" else imagenet_templates_small | |
| self.flip_transform = transforms.RandomHorizontalFlip(p=self.flip_p) | |
| def __len__(self): | |
| return self._length | |
| def __getitem__(self, i): | |
| example = {} | |
| image = Image.open(self.image_paths[i % self.num_images]) | |
| if not image.mode == "RGB": | |
| image = image.convert("RGB") | |
| placeholder_string = self.placeholder_token | |
| text = random.choice(self.templates).format(placeholder_string) | |
| example["input_ids"] = self.tokenizer( | |
| text, | |
| padding="max_length", | |
| truncation=True, | |
| max_length=self.tokenizer.model_max_length, | |
| return_tensors="pt", | |
| ).input_ids[0] | |
| # default to score-sde preprocessing | |
| img = np.array(image).astype(np.uint8) | |
| if self.center_crop: | |
| crop = min(img.shape[0], img.shape[1]) | |
| ( | |
| h, | |
| w, | |
| ) = ( | |
| img.shape[0], | |
| img.shape[1], | |
| ) | |
| img = img[(h - crop) // 2 : (h + crop) // 2, (w - crop) // 2 : (w + crop) // 2] | |
| image = Image.fromarray(img) | |
| image = image.resize((self.size, self.size), resample=self.interpolation) | |
| image = self.flip_transform(image) | |
| image = np.array(image).astype(np.uint8) | |
| image = (image / 127.5 - 1.0).astype(np.float32) | |
| example["pixel_values"] = torch.from_numpy(image).permute(2, 0, 1) | |
| return example | |
| def resize_token_embeddings(model, new_num_tokens, initializer_token_id, placeholder_token_id, rng): | |
| if model.config.vocab_size == new_num_tokens or new_num_tokens is None: | |
| return | |
| model.config.vocab_size = new_num_tokens | |
| params = model.params | |
| old_embeddings = params["text_model"]["embeddings"]["token_embedding"]["embedding"] | |
| old_num_tokens, emb_dim = old_embeddings.shape | |
| initializer = jax.nn.initializers.normal() | |
| new_embeddings = initializer(rng, (new_num_tokens, emb_dim)) | |
| new_embeddings = new_embeddings.at[:old_num_tokens].set(old_embeddings) | |
| new_embeddings = new_embeddings.at[placeholder_token_id].set(new_embeddings[initializer_token_id]) | |
| params["text_model"]["embeddings"]["token_embedding"]["embedding"] = new_embeddings | |
| model.params = params | |
| return model | |
| def get_params_to_save(params): | |
| return jax.device_get(jax.tree_util.tree_map(lambda x: x[0], params)) | |
| def main(): | |
| args = parse_args() | |
| if args.seed is not None: | |
| set_seed(args.seed) | |
| if jax.process_index() == 0: | |
| if args.output_dir is not None: | |
| os.makedirs(args.output_dir, exist_ok=True) | |
| if args.push_to_hub: | |
| repo_id = create_repo( | |
| repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token | |
| ).repo_id | |
| # Make one log on every process with the configuration for debugging. | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| level=logging.INFO, | |
| ) | |
| # Setup logging, we only want one process per machine to log things on the screen. | |
| logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) | |
| if jax.process_index() == 0: | |
| transformers.utils.logging.set_verbosity_info() | |
| else: | |
| transformers.utils.logging.set_verbosity_error() | |
| # Load the tokenizer and add the placeholder token as a additional special token | |
| if args.tokenizer_name: | |
| tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name) | |
| elif args.pretrained_model_name_or_path: | |
| tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer") | |
| # Add the placeholder token in tokenizer | |
| num_added_tokens = tokenizer.add_tokens(args.placeholder_token) | |
| if num_added_tokens == 0: | |
| raise ValueError( | |
| f"The tokenizer already contains the token {args.placeholder_token}. Please pass a different" | |
| " `placeholder_token` that is not already in the tokenizer." | |
| ) | |
| # Convert the initializer_token, placeholder_token to ids | |
| token_ids = tokenizer.encode(args.initializer_token, add_special_tokens=False) | |
| # Check if initializer_token is a single token or a sequence of tokens | |
| if len(token_ids) > 1: | |
| raise ValueError("The initializer token must be a single token.") | |
| initializer_token_id = token_ids[0] | |
| placeholder_token_id = tokenizer.convert_tokens_to_ids(args.placeholder_token) | |
| # Load models and create wrapper for stable diffusion | |
| text_encoder = FlaxCLIPTextModel.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision | |
| ) | |
| vae, vae_params = FlaxAutoencoderKL.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision | |
| ) | |
| unet, unet_params = FlaxUNet2DConditionModel.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision | |
| ) | |
| # Create sampling rng | |
| rng = jax.random.PRNGKey(args.seed) | |
| rng, _ = jax.random.split(rng) | |
| # Resize the token embeddings as we are adding new special tokens to the tokenizer | |
| text_encoder = resize_token_embeddings( | |
| text_encoder, len(tokenizer), initializer_token_id, placeholder_token_id, rng | |
| ) | |
| original_token_embeds = text_encoder.params["text_model"]["embeddings"]["token_embedding"]["embedding"] | |
| train_dataset = TextualInversionDataset( | |
| data_root=args.train_data_dir, | |
| tokenizer=tokenizer, | |
| size=args.resolution, | |
| placeholder_token=args.placeholder_token, | |
| repeats=args.repeats, | |
| learnable_property=args.learnable_property, | |
| center_crop=args.center_crop, | |
| set="train", | |
| ) | |
| def collate_fn(examples): | |
| pixel_values = torch.stack([example["pixel_values"] for example in examples]) | |
| input_ids = torch.stack([example["input_ids"] for example in examples]) | |
| batch = {"pixel_values": pixel_values, "input_ids": input_ids} | |
| batch = {k: v.numpy() for k, v in batch.items()} | |
| return batch | |
| total_train_batch_size = args.train_batch_size * jax.local_device_count() | |
| train_dataloader = torch.utils.data.DataLoader( | |
| train_dataset, batch_size=total_train_batch_size, shuffle=True, drop_last=True, collate_fn=collate_fn | |
| ) | |
| # Optimization | |
| if args.scale_lr: | |
| args.learning_rate = args.learning_rate * total_train_batch_size | |
| constant_scheduler = optax.constant_schedule(args.learning_rate) | |
| optimizer = optax.adamw( | |
| learning_rate=constant_scheduler, | |
| b1=args.adam_beta1, | |
| b2=args.adam_beta2, | |
| eps=args.adam_epsilon, | |
| weight_decay=args.adam_weight_decay, | |
| ) | |
| def create_mask(params, label_fn): | |
| def _map(params, mask, label_fn): | |
| for k in params: | |
| if label_fn(k): | |
| mask[k] = "token_embedding" | |
| else: | |
| if isinstance(params[k], dict): | |
| mask[k] = {} | |
| _map(params[k], mask[k], label_fn) | |
| else: | |
| mask[k] = "zero" | |
| mask = {} | |
| _map(params, mask, label_fn) | |
| return mask | |
| def zero_grads(): | |
| # from https://github.com/deepmind/optax/issues/159#issuecomment-896459491 | |
| def init_fn(_): | |
| return () | |
| def update_fn(updates, state, params=None): | |
| return jax.tree_util.tree_map(jnp.zeros_like, updates), () | |
| return optax.GradientTransformation(init_fn, update_fn) | |
| # Zero out gradients of layers other than the token embedding layer | |
| tx = optax.multi_transform( | |
| {"token_embedding": optimizer, "zero": zero_grads()}, | |
| create_mask(text_encoder.params, lambda s: s == "token_embedding"), | |
| ) | |
| state = train_state.TrainState.create(apply_fn=text_encoder.__call__, params=text_encoder.params, tx=tx) | |
| noise_scheduler = FlaxDDPMScheduler( | |
| beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000 | |
| ) | |
| noise_scheduler_state = noise_scheduler.create_state() | |
| # Initialize our training | |
| train_rngs = jax.random.split(rng, jax.local_device_count()) | |
| # Define gradient train step fn | |
| def train_step(state, vae_params, unet_params, batch, train_rng): | |
| dropout_rng, sample_rng, new_train_rng = jax.random.split(train_rng, 3) | |
| def compute_loss(params): | |
| vae_outputs = vae.apply( | |
| {"params": vae_params}, batch["pixel_values"], deterministic=True, method=vae.encode | |
| ) | |
| latents = vae_outputs.latent_dist.sample(sample_rng) | |
| # (NHWC) -> (NCHW) | |
| latents = jnp.transpose(latents, (0, 3, 1, 2)) | |
| latents = latents * vae.config.scaling_factor | |
| noise_rng, timestep_rng = jax.random.split(sample_rng) | |
| noise = jax.random.normal(noise_rng, latents.shape) | |
| bsz = latents.shape[0] | |
| timesteps = jax.random.randint( | |
| timestep_rng, | |
| (bsz,), | |
| 0, | |
| noise_scheduler.config.num_train_timesteps, | |
| ) | |
| noisy_latents = noise_scheduler.add_noise(noise_scheduler_state, latents, noise, timesteps) | |
| encoder_hidden_states = state.apply_fn( | |
| batch["input_ids"], params=params, dropout_rng=dropout_rng, train=True | |
| )[0] | |
| # Predict the noise residual and compute loss | |
| model_pred = unet.apply( | |
| {"params": unet_params}, noisy_latents, timesteps, encoder_hidden_states, train=False | |
| ).sample | |
| # Get the target for loss depending on the prediction type | |
| if noise_scheduler.config.prediction_type == "epsilon": | |
| target = noise | |
| elif noise_scheduler.config.prediction_type == "v_prediction": | |
| target = noise_scheduler.get_velocity(noise_scheduler_state, latents, noise, timesteps) | |
| else: | |
| raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") | |
| loss = (target - model_pred) ** 2 | |
| loss = loss.mean() | |
| return loss | |
| grad_fn = jax.value_and_grad(compute_loss) | |
| loss, grad = grad_fn(state.params) | |
| grad = jax.lax.pmean(grad, "batch") | |
| new_state = state.apply_gradients(grads=grad) | |
| # Keep the token embeddings fixed except the newly added embeddings for the concept, | |
| # as we only want to optimize the concept embeddings | |
| token_embeds = original_token_embeds.at[placeholder_token_id].set( | |
| new_state.params["text_model"]["embeddings"]["token_embedding"]["embedding"][placeholder_token_id] | |
| ) | |
| new_state.params["text_model"]["embeddings"]["token_embedding"]["embedding"] = token_embeds | |
| metrics = {"loss": loss} | |
| metrics = jax.lax.pmean(metrics, axis_name="batch") | |
| return new_state, metrics, new_train_rng | |
| # Create parallel version of the train and eval step | |
| p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,)) | |
| # Replicate the train state on each device | |
| state = jax_utils.replicate(state) | |
| vae_params = jax_utils.replicate(vae_params) | |
| unet_params = jax_utils.replicate(unet_params) | |
| # Train! | |
| num_update_steps_per_epoch = math.ceil(len(train_dataloader)) | |
| # Scheduler and math around the number of training steps. | |
| if args.max_train_steps is None: | |
| args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
| args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
| logger.info("***** Running training *****") | |
| logger.info(f" Num examples = {len(train_dataset)}") | |
| logger.info(f" Num Epochs = {args.num_train_epochs}") | |
| logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | |
| logger.info(f" Total train batch size (w. parallel & distributed) = {total_train_batch_size}") | |
| logger.info(f" Total optimization steps = {args.max_train_steps}") | |
| global_step = 0 | |
| epochs = tqdm(range(args.num_train_epochs), desc=f"Epoch ... (1/{args.num_train_epochs})", position=0) | |
| for epoch in epochs: | |
| # ======================== Training ================================ | |
| train_metrics = [] | |
| steps_per_epoch = len(train_dataset) // total_train_batch_size | |
| train_step_progress_bar = tqdm(total=steps_per_epoch, desc="Training...", position=1, leave=False) | |
| # train | |
| for batch in train_dataloader: | |
| batch = shard(batch) | |
| state, train_metric, train_rngs = p_train_step(state, vae_params, unet_params, batch, train_rngs) | |
| train_metrics.append(train_metric) | |
| train_step_progress_bar.update(1) | |
| global_step += 1 | |
| if global_step >= args.max_train_steps: | |
| break | |
| if global_step % args.save_steps == 0: | |
| learned_embeds = get_params_to_save(state.params)["text_model"]["embeddings"]["token_embedding"][ | |
| "embedding" | |
| ][placeholder_token_id] | |
| learned_embeds_dict = {args.placeholder_token: learned_embeds} | |
| jnp.save( | |
| os.path.join(args.output_dir, "learned_embeds-" + str(global_step) + ".npy"), learned_embeds_dict | |
| ) | |
| train_metric = jax_utils.unreplicate(train_metric) | |
| train_step_progress_bar.close() | |
| epochs.write(f"Epoch... ({epoch + 1}/{args.num_train_epochs} | Loss: {train_metric['loss']})") | |
| # Create the pipeline using using the trained modules and save it. | |
| if jax.process_index() == 0: | |
| scheduler = FlaxPNDMScheduler( | |
| beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", skip_prk_steps=True | |
| ) | |
| safety_checker = FlaxStableDiffusionSafetyChecker.from_pretrained( | |
| "CompVis/stable-diffusion-safety-checker", from_pt=True | |
| ) | |
| pipeline = FlaxStableDiffusionPipeline( | |
| text_encoder=text_encoder, | |
| vae=vae, | |
| unet=unet, | |
| tokenizer=tokenizer, | |
| scheduler=scheduler, | |
| safety_checker=safety_checker, | |
| feature_extractor=CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32"), | |
| ) | |
| pipeline.save_pretrained( | |
| args.output_dir, | |
| params={ | |
| "text_encoder": get_params_to_save(state.params), | |
| "vae": get_params_to_save(vae_params), | |
| "unet": get_params_to_save(unet_params), | |
| "safety_checker": safety_checker.params, | |
| }, | |
| ) | |
| # Also save the newly trained embeddings | |
| learned_embeds = get_params_to_save(state.params)["text_model"]["embeddings"]["token_embedding"]["embedding"][ | |
| placeholder_token_id | |
| ] | |
| learned_embeds_dict = {args.placeholder_token: learned_embeds} | |
| jnp.save(os.path.join(args.output_dir, "learned_embeds.npy"), learned_embeds_dict) | |
| if args.push_to_hub: | |
| upload_folder( | |
| repo_id=repo_id, | |
| folder_path=args.output_dir, | |
| commit_message="End of training", | |
| ignore_patterns=["step_*", "epoch_*"], | |
| ) | |
| if __name__ == "__main__": | |
| main() | |