Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python | |
| # coding=utf-8 | |
| # Copyright 2023 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| import argparse | |
| import logging | |
| import math | |
| import os | |
| import random | |
| from pathlib import Path | |
| import jax | |
| import jax.numpy as jnp | |
| import numpy as np | |
| import optax | |
| import torch | |
| import torch.utils.checkpoint | |
| import transformers | |
| from datasets import load_dataset | |
| from flax import jax_utils | |
| from flax.core.frozen_dict import unfreeze | |
| from flax.training import train_state | |
| from flax.training.common_utils import shard | |
| from huggingface_hub import create_repo, upload_folder | |
| from PIL import Image | |
| from torch.utils.data import IterableDataset | |
| from torchvision import transforms | |
| from tqdm.auto import tqdm | |
| from transformers import CLIPTokenizer, FlaxCLIPTextModel, set_seed | |
| from diffusers import ( | |
| FlaxAutoencoderKL, | |
| FlaxControlNetModel, | |
| FlaxDDPMScheduler, | |
| FlaxStableDiffusionControlNetPipeline, | |
| FlaxUNet2DConditionModel, | |
| ) | |
| from diffusers.utils import check_min_version, is_wandb_available | |
| if is_wandb_available(): | |
| import wandb | |
| # Will error if the minimal version of diffusers is not installed. Remove at your own risks. | |
| check_min_version("0.15.0.dev0") | |
| logger = logging.getLogger(__name__) | |
| def image_grid(imgs, rows, cols): | |
| assert len(imgs) == rows * cols | |
| w, h = imgs[0].size | |
| grid = Image.new("RGB", size=(cols * w, rows * h)) | |
| grid_w, grid_h = grid.size | |
| for i, img in enumerate(imgs): | |
| grid.paste(img, box=(i % cols * w, i // cols * h)) | |
| return grid | |
| def log_validation(controlnet, controlnet_params, tokenizer, args, rng, weight_dtype): | |
| logger.info("Running validation... ") | |
| pipeline, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| tokenizer=tokenizer, | |
| controlnet=controlnet, | |
| safety_checker=None, | |
| dtype=weight_dtype, | |
| revision=args.revision, | |
| from_pt=args.from_pt, | |
| ) | |
| params = jax_utils.replicate(params) | |
| params["controlnet"] = controlnet_params | |
| num_samples = jax.device_count() | |
| prng_seed = jax.random.split(rng, jax.device_count()) | |
| if len(args.validation_image) == len(args.validation_prompt): | |
| validation_images = args.validation_image | |
| validation_prompts = args.validation_prompt | |
| elif len(args.validation_image) == 1: | |
| validation_images = args.validation_image * len(args.validation_prompt) | |
| validation_prompts = args.validation_prompt | |
| elif len(args.validation_prompt) == 1: | |
| validation_images = args.validation_image | |
| validation_prompts = args.validation_prompt * len(args.validation_image) | |
| else: | |
| raise ValueError( | |
| "number of `args.validation_image` and `args.validation_prompt` should be checked in `parse_args`" | |
| ) | |
| image_logs = [] | |
| for validation_prompt, validation_image in zip(validation_prompts, validation_images): | |
| prompts = num_samples * [validation_prompt] | |
| prompt_ids = pipeline.prepare_text_inputs(prompts) | |
| prompt_ids = shard(prompt_ids) | |
| validation_image = Image.open(validation_image).convert("RGB") | |
| processed_image = pipeline.prepare_image_inputs(num_samples * [validation_image]) | |
| processed_image = shard(processed_image) | |
| images = pipeline( | |
| prompt_ids=prompt_ids, | |
| image=processed_image, | |
| params=params, | |
| prng_seed=prng_seed, | |
| num_inference_steps=50, | |
| jit=True, | |
| ).images | |
| images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) | |
| images = pipeline.numpy_to_pil(images) | |
| image_logs.append( | |
| {"validation_image": validation_image, "images": images, "validation_prompt": validation_prompt} | |
| ) | |
| if args.report_to == "wandb": | |
| formatted_images = [] | |
| for log in image_logs: | |
| images = log["images"] | |
| validation_prompt = log["validation_prompt"] | |
| validation_image = log["validation_image"] | |
| formatted_images.append(wandb.Image(validation_image, caption="Controlnet conditioning")) | |
| for image in images: | |
| image = wandb.Image(image, caption=validation_prompt) | |
| formatted_images.append(image) | |
| wandb.log({"validation": formatted_images}) | |
| else: | |
| logger.warn(f"image logging not implemented for {args.report_to}") | |
| return image_logs | |
| def save_model_card(repo_id: str, image_logs=None, base_model=str, repo_folder=None): | |
| img_str = "" | |
| for i, log in enumerate(image_logs): | |
| images = log["images"] | |
| validation_prompt = log["validation_prompt"] | |
| validation_image = log["validation_image"] | |
| validation_image.save(os.path.join(repo_folder, "image_control.png")) | |
| img_str += f"prompt: {validation_prompt}\n" | |
| images = [validation_image] + images | |
| image_grid(images, 1, len(images)).save(os.path.join(repo_folder, f"images_{i}.png")) | |
| img_str += f"\n" | |
| yaml = f""" | |
| --- | |
| license: creativeml-openrail-m | |
| base_model: {base_model} | |
| tags: | |
| - stable-diffusion | |
| - stable-diffusion-diffusers | |
| - text-to-image | |
| - diffusers | |
| - controlnet | |
| inference: true | |
| --- | |
| """ | |
| model_card = f""" | |
| # controlnet- {repo_id} | |
| These are controlnet weights trained on {base_model} with new type of conditioning. You can find some example images in the following. \n | |
| {img_str} | |
| """ | |
| with open(os.path.join(repo_folder, "README.md"), "w") as f: | |
| f.write(yaml + model_card) | |
| def parse_args(): | |
| parser = argparse.ArgumentParser(description="Simple example of a training script.") | |
| parser.add_argument( | |
| "--pretrained_model_name_or_path", | |
| type=str, | |
| required=True, | |
| help="Path to pretrained model or model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--controlnet_model_name_or_path", | |
| type=str, | |
| default=None, | |
| help="Path to pretrained controlnet model or model identifier from huggingface.co/models." | |
| " If not specified controlnet weights are initialized from unet.", | |
| ) | |
| parser.add_argument( | |
| "--revision", | |
| type=str, | |
| default=None, | |
| help="Revision of pretrained model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--from_pt", | |
| action="store_true", | |
| help="Load the pretrained model from a PyTorch checkpoint.", | |
| ) | |
| parser.add_argument( | |
| "--tokenizer_name", | |
| type=str, | |
| default=None, | |
| help="Pretrained tokenizer name or path if not the same as model_name", | |
| ) | |
| parser.add_argument( | |
| "--output_dir", | |
| type=str, | |
| default="controlnet-model", | |
| help="The output directory where the model predictions and checkpoints will be written.", | |
| ) | |
| parser.add_argument( | |
| "--cache_dir", | |
| type=str, | |
| default=None, | |
| help="The directory where the downloaded models and datasets will be stored.", | |
| ) | |
| parser.add_argument("--seed", type=int, default=0, help="A seed for reproducible training.") | |
| parser.add_argument( | |
| "--resolution", | |
| type=int, | |
| default=512, | |
| help=( | |
| "The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
| " resolution" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--train_batch_size", type=int, default=1, help="Batch size (per device) for the training dataloader." | |
| ) | |
| parser.add_argument("--num_train_epochs", type=int, default=100) | |
| parser.add_argument( | |
| "--max_train_steps", | |
| type=int, | |
| default=None, | |
| help="Total number of training steps to perform.", | |
| ) | |
| parser.add_argument( | |
| "--learning_rate", | |
| type=float, | |
| default=1e-4, | |
| help="Initial learning rate (after the potential warmup period) to use.", | |
| ) | |
| parser.add_argument( | |
| "--scale_lr", | |
| action="store_true", | |
| help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | |
| ) | |
| parser.add_argument( | |
| "--lr_scheduler", | |
| type=str, | |
| default="constant", | |
| help=( | |
| 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | |
| ' "constant", "constant_with_warmup"]' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--dataloader_num_workers", | |
| type=int, | |
| default=0, | |
| help=( | |
| "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." | |
| ), | |
| ) | |
| parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") | |
| parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") | |
| parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") | |
| parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") | |
| parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
| parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") | |
| parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") | |
| parser.add_argument( | |
| "--hub_model_id", | |
| type=str, | |
| default=None, | |
| help="The name of the repository to keep in sync with the local `output_dir`.", | |
| ) | |
| parser.add_argument( | |
| "--logging_dir", | |
| type=str, | |
| default="logs", | |
| help=( | |
| "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" | |
| " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--logging_steps", | |
| type=int, | |
| default=100, | |
| help=("log training metric every X steps to `--report_t`"), | |
| ) | |
| parser.add_argument( | |
| "--report_to", | |
| type=str, | |
| default="tensorboard", | |
| help=( | |
| 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' | |
| ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--mixed_precision", | |
| type=str, | |
| default="no", | |
| choices=["no", "fp16", "bf16"], | |
| help=( | |
| "Whether to use mixed precision. Choose" | |
| "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." | |
| "and an Nvidia Ampere GPU." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--dataset_name", | |
| type=str, | |
| default=None, | |
| help=( | |
| "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," | |
| " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," | |
| " or to a folder containing files that 🤗 Datasets can understand." | |
| ), | |
| ) | |
| parser.add_argument("--streaming", action="store_true", help="To stream a large dataset from Hub.") | |
| parser.add_argument( | |
| "--dataset_config_name", | |
| type=str, | |
| default=None, | |
| help="The config of the Dataset, leave as None if there's only one config.", | |
| ) | |
| parser.add_argument( | |
| "--train_data_dir", | |
| type=str, | |
| default=None, | |
| help=( | |
| "A folder containing the training data. Folder contents must follow the structure described in" | |
| " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" | |
| " must exist to provide the captions for the images. Ignored if `dataset_name` is specified." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--image_column", type=str, default="image", help="The column of the dataset containing the target image." | |
| ) | |
| parser.add_argument( | |
| "--conditioning_image_column", | |
| type=str, | |
| default="conditioning_image", | |
| help="The column of the dataset containing the controlnet conditioning image.", | |
| ) | |
| parser.add_argument( | |
| "--caption_column", | |
| type=str, | |
| default="text", | |
| help="The column of the dataset containing a caption or a list of captions.", | |
| ) | |
| parser.add_argument( | |
| "--max_train_samples", | |
| type=int, | |
| default=None, | |
| help=( | |
| "For debugging purposes or quicker training, truncate the number of training examples to this " | |
| "value if set. Needed if `streaming` is set to True." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--proportion_empty_prompts", | |
| type=float, | |
| default=0, | |
| help="Proportion of image prompts to be replaced with empty strings. Defaults to 0 (no prompt replacement).", | |
| ) | |
| parser.add_argument( | |
| "--validation_prompt", | |
| type=str, | |
| default=None, | |
| nargs="+", | |
| help=( | |
| "A set of prompts evaluated every `--validation_steps` and logged to `--report_to`." | |
| " Provide either a matching number of `--validation_image`s, a single `--validation_image`" | |
| " to be used with all prompts, or a single prompt that will be used with all `--validation_image`s." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--validation_image", | |
| type=str, | |
| default=None, | |
| nargs="+", | |
| help=( | |
| "A set of paths to the controlnet conditioning image be evaluated every `--validation_steps`" | |
| " and logged to `--report_to`. Provide either a matching number of `--validation_prompt`s, a" | |
| " a single `--validation_prompt` to be used with all `--validation_image`s, or a single" | |
| " `--validation_image` that will be used with all `--validation_prompt`s." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--validation_steps", | |
| type=int, | |
| default=100, | |
| help=( | |
| "Run validation every X steps. Validation consists of running the prompt" | |
| " `args.validation_prompt` and logging the images." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--tracker_project_name", | |
| type=str, | |
| default="train_controlnet_flax", | |
| help=("The `project` argument passed to wandb"), | |
| ) | |
| parser.add_argument( | |
| "--gradient_accumulation_steps", type=int, default=1, help="Number of steps to accumulate gradients over" | |
| ) | |
| parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") | |
| args = parser.parse_args() | |
| env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) | |
| if env_local_rank != -1 and env_local_rank != args.local_rank: | |
| args.local_rank = env_local_rank | |
| # Sanity checks | |
| if args.dataset_name is None and args.train_data_dir is None: | |
| raise ValueError("Need either a dataset name or a training folder.") | |
| if args.dataset_name is not None and args.train_data_dir is not None: | |
| raise ValueError("Specify only one of `--dataset_name` or `--train_data_dir`") | |
| if args.proportion_empty_prompts < 0 or args.proportion_empty_prompts > 1: | |
| raise ValueError("`--proportion_empty_prompts` must be in the range [0, 1].") | |
| if args.validation_prompt is not None and args.validation_image is None: | |
| raise ValueError("`--validation_image` must be set if `--validation_prompt` is set") | |
| if args.validation_prompt is None and args.validation_image is not None: | |
| raise ValueError("`--validation_prompt` must be set if `--validation_image` is set") | |
| if ( | |
| args.validation_image is not None | |
| and args.validation_prompt is not None | |
| and len(args.validation_image) != 1 | |
| and len(args.validation_prompt) != 1 | |
| and len(args.validation_image) != len(args.validation_prompt) | |
| ): | |
| raise ValueError( | |
| "Must provide either 1 `--validation_image`, 1 `--validation_prompt`," | |
| " or the same number of `--validation_prompt`s and `--validation_image`s" | |
| ) | |
| # This idea comes from | |
| # https://github.com/borisdayma/dalle-mini/blob/d2be512d4a6a9cda2d63ba04afc33038f98f705f/src/dalle_mini/data.py#L370 | |
| if args.streaming and args.max_train_samples is None: | |
| raise ValueError("You must specify `max_train_samples` when using dataset streaming.") | |
| return args | |
| def make_train_dataset(args, tokenizer, batch_size=None): | |
| # Get the datasets: you can either provide your own training and evaluation files (see below) | |
| # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub). | |
| # In distributed training, the load_dataset function guarantees that only one local process can concurrently | |
| # download the dataset. | |
| if args.dataset_name is not None: | |
| # Downloading and loading a dataset from the hub. | |
| dataset = load_dataset( | |
| args.dataset_name, | |
| args.dataset_config_name, | |
| cache_dir=args.cache_dir, | |
| streaming=args.streaming, | |
| ) | |
| else: | |
| if args.train_data_dir is not None: | |
| dataset = load_dataset( | |
| args.train_data_dir, | |
| cache_dir=args.cache_dir, | |
| ) | |
| # See more about loading custom images at | |
| # https://huggingface.co/docs/datasets/v2.0.0/en/dataset_script | |
| # Preprocessing the datasets. | |
| # We need to tokenize inputs and targets. | |
| if isinstance(dataset["train"], IterableDataset): | |
| column_names = next(iter(dataset["train"])).keys() | |
| else: | |
| column_names = dataset["train"].column_names | |
| # 6. Get the column names for input/target. | |
| if args.image_column is None: | |
| image_column = column_names[0] | |
| logger.info(f"image column defaulting to {image_column}") | |
| else: | |
| image_column = args.image_column | |
| if image_column not in column_names: | |
| raise ValueError( | |
| f"`--image_column` value '{args.image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" | |
| ) | |
| if args.caption_column is None: | |
| caption_column = column_names[1] | |
| logger.info(f"caption column defaulting to {caption_column}") | |
| else: | |
| caption_column = args.caption_column | |
| if caption_column not in column_names: | |
| raise ValueError( | |
| f"`--caption_column` value '{args.caption_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" | |
| ) | |
| if args.conditioning_image_column is None: | |
| conditioning_image_column = column_names[2] | |
| logger.info(f"conditioning image column defaulting to {caption_column}") | |
| else: | |
| conditioning_image_column = args.conditioning_image_column | |
| if conditioning_image_column not in column_names: | |
| raise ValueError( | |
| f"`--conditioning_image_column` value '{args.conditioning_image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" | |
| ) | |
| def tokenize_captions(examples, is_train=True): | |
| captions = [] | |
| for caption in examples[caption_column]: | |
| if random.random() < args.proportion_empty_prompts: | |
| captions.append("") | |
| elif isinstance(caption, str): | |
| captions.append(caption) | |
| elif isinstance(caption, (list, np.ndarray)): | |
| # take a random caption if there are multiple | |
| captions.append(random.choice(caption) if is_train else caption[0]) | |
| else: | |
| raise ValueError( | |
| f"Caption column `{caption_column}` should contain either strings or lists of strings." | |
| ) | |
| inputs = tokenizer( | |
| captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt" | |
| ) | |
| return inputs.input_ids | |
| image_transforms = transforms.Compose( | |
| [ | |
| transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.5], [0.5]), | |
| ] | |
| ) | |
| conditioning_image_transforms = transforms.Compose( | |
| [ | |
| transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), | |
| transforms.ToTensor(), | |
| ] | |
| ) | |
| def preprocess_train(examples): | |
| images = [image.convert("RGB") for image in examples[image_column]] | |
| images = [image_transforms(image) for image in images] | |
| conditioning_images = [image.convert("RGB") for image in examples[conditioning_image_column]] | |
| conditioning_images = [conditioning_image_transforms(image) for image in conditioning_images] | |
| examples["pixel_values"] = images | |
| examples["conditioning_pixel_values"] = conditioning_images | |
| examples["input_ids"] = tokenize_captions(examples) | |
| return examples | |
| if jax.process_index() == 0: | |
| if args.max_train_samples is not None: | |
| if args.streaming: | |
| dataset["train"] = dataset["train"].shuffle(seed=args.seed).take(args.max_train_samples) | |
| else: | |
| dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples)) | |
| # Set the training transforms | |
| if args.streaming: | |
| train_dataset = dataset["train"].map( | |
| preprocess_train, | |
| batched=True, | |
| batch_size=batch_size, | |
| remove_columns=list(dataset["train"].features.keys()), | |
| ) | |
| else: | |
| train_dataset = dataset["train"].with_transform(preprocess_train) | |
| return train_dataset | |
| def collate_fn(examples): | |
| pixel_values = torch.stack([example["pixel_values"] for example in examples]) | |
| pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() | |
| conditioning_pixel_values = torch.stack([example["conditioning_pixel_values"] for example in examples]) | |
| conditioning_pixel_values = conditioning_pixel_values.to(memory_format=torch.contiguous_format).float() | |
| input_ids = torch.stack([example["input_ids"] for example in examples]) | |
| batch = { | |
| "pixel_values": pixel_values, | |
| "conditioning_pixel_values": conditioning_pixel_values, | |
| "input_ids": input_ids, | |
| } | |
| batch = {k: v.numpy() for k, v in batch.items()} | |
| return batch | |
| def get_params_to_save(params): | |
| return jax.device_get(jax.tree_util.tree_map(lambda x: x[0], params)) | |
| def main(): | |
| args = parse_args() | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| level=logging.INFO, | |
| ) | |
| # Setup logging, we only want one process per machine to log things on the screen. | |
| logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) | |
| if jax.process_index() == 0: | |
| transformers.utils.logging.set_verbosity_info() | |
| else: | |
| transformers.utils.logging.set_verbosity_error() | |
| # wandb init | |
| if jax.process_index() == 0 and args.report_to == "wandb": | |
| wandb.init( | |
| project=args.tracker_project_name, | |
| job_type="train", | |
| config=args, | |
| ) | |
| if args.seed is not None: | |
| set_seed(args.seed) | |
| rng = jax.random.PRNGKey(0) | |
| # Handle the repository creation | |
| if jax.process_index() == 0: | |
| if args.output_dir is not None: | |
| os.makedirs(args.output_dir, exist_ok=True) | |
| if args.push_to_hub: | |
| repo_id = create_repo( | |
| repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token | |
| ).repo_id | |
| # Load the tokenizer and add the placeholder token as a additional special token | |
| if args.tokenizer_name: | |
| tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name) | |
| elif args.pretrained_model_name_or_path: | |
| tokenizer = CLIPTokenizer.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision | |
| ) | |
| else: | |
| raise NotImplementedError("No tokenizer specified!") | |
| # Get the datasets: you can either provide your own training and evaluation files (see below) | |
| total_train_batch_size = args.train_batch_size * jax.local_device_count() * args.gradient_accumulation_steps | |
| train_dataset = make_train_dataset(args, tokenizer, batch_size=total_train_batch_size) | |
| train_dataloader = torch.utils.data.DataLoader( | |
| train_dataset, | |
| shuffle=not args.streaming, | |
| collate_fn=collate_fn, | |
| batch_size=total_train_batch_size, | |
| num_workers=args.dataloader_num_workers, | |
| drop_last=True, | |
| ) | |
| weight_dtype = jnp.float32 | |
| if args.mixed_precision == "fp16": | |
| weight_dtype = jnp.float16 | |
| elif args.mixed_precision == "bf16": | |
| weight_dtype = jnp.bfloat16 | |
| # Load models and create wrapper for stable diffusion | |
| text_encoder = FlaxCLIPTextModel.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| subfolder="text_encoder", | |
| dtype=weight_dtype, | |
| revision=args.revision, | |
| from_pt=args.from_pt, | |
| ) | |
| vae, vae_params = FlaxAutoencoderKL.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| revision=args.revision, | |
| subfolder="vae", | |
| dtype=weight_dtype, | |
| from_pt=args.from_pt, | |
| ) | |
| unet, unet_params = FlaxUNet2DConditionModel.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| subfolder="unet", | |
| dtype=weight_dtype, | |
| revision=args.revision, | |
| from_pt=args.from_pt, | |
| ) | |
| if args.controlnet_model_name_or_path: | |
| logger.info("Loading existing controlnet weights") | |
| controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( | |
| args.controlnet_model_name_or_path, from_pt=True, dtype=jnp.float32 | |
| ) | |
| else: | |
| logger.info("Initializing controlnet weights from unet") | |
| rng, rng_params = jax.random.split(rng) | |
| controlnet = FlaxControlNetModel( | |
| in_channels=unet.config.in_channels, | |
| down_block_types=unet.config.down_block_types, | |
| only_cross_attention=unet.config.only_cross_attention, | |
| block_out_channels=unet.config.block_out_channels, | |
| layers_per_block=unet.config.layers_per_block, | |
| attention_head_dim=unet.config.attention_head_dim, | |
| cross_attention_dim=unet.config.cross_attention_dim, | |
| use_linear_projection=unet.config.use_linear_projection, | |
| flip_sin_to_cos=unet.config.flip_sin_to_cos, | |
| freq_shift=unet.config.freq_shift, | |
| ) | |
| controlnet_params = controlnet.init_weights(rng=rng_params) | |
| controlnet_params = unfreeze(controlnet_params) | |
| for key in [ | |
| "conv_in", | |
| "time_embedding", | |
| "down_blocks_0", | |
| "down_blocks_1", | |
| "down_blocks_2", | |
| "down_blocks_3", | |
| "mid_block", | |
| ]: | |
| controlnet_params[key] = unet_params[key] | |
| # Optimization | |
| if args.scale_lr: | |
| args.learning_rate = args.learning_rate * total_train_batch_size | |
| constant_scheduler = optax.constant_schedule(args.learning_rate) | |
| adamw = optax.adamw( | |
| learning_rate=constant_scheduler, | |
| b1=args.adam_beta1, | |
| b2=args.adam_beta2, | |
| eps=args.adam_epsilon, | |
| weight_decay=args.adam_weight_decay, | |
| ) | |
| optimizer = optax.chain( | |
| optax.clip_by_global_norm(args.max_grad_norm), | |
| adamw, | |
| ) | |
| state = train_state.TrainState.create(apply_fn=controlnet.__call__, params=controlnet_params, tx=optimizer) | |
| noise_scheduler, noise_scheduler_state = FlaxDDPMScheduler.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="scheduler" | |
| ) | |
| # Initialize our training | |
| validation_rng, train_rngs = jax.random.split(rng) | |
| train_rngs = jax.random.split(train_rngs, jax.local_device_count()) | |
| def train_step(state, unet_params, text_encoder_params, vae_params, batch, train_rng): | |
| # reshape batch, add grad_step_dim if gradient_accumulation_steps > 1 | |
| if args.gradient_accumulation_steps > 1: | |
| grad_steps = args.gradient_accumulation_steps | |
| batch = jax.tree_map(lambda x: x.reshape((grad_steps, x.shape[0] // grad_steps) + x.shape[1:]), batch) | |
| def compute_loss(params, minibatch, sample_rng): | |
| # Convert images to latent space | |
| vae_outputs = vae.apply( | |
| {"params": vae_params}, minibatch["pixel_values"], deterministic=True, method=vae.encode | |
| ) | |
| latents = vae_outputs.latent_dist.sample(sample_rng) | |
| # (NHWC) -> (NCHW) | |
| latents = jnp.transpose(latents, (0, 3, 1, 2)) | |
| latents = latents * vae.config.scaling_factor | |
| # Sample noise that we'll add to the latents | |
| noise_rng, timestep_rng = jax.random.split(sample_rng) | |
| noise = jax.random.normal(noise_rng, latents.shape) | |
| # Sample a random timestep for each image | |
| bsz = latents.shape[0] | |
| timesteps = jax.random.randint( | |
| timestep_rng, | |
| (bsz,), | |
| 0, | |
| noise_scheduler.config.num_train_timesteps, | |
| ) | |
| # Add noise to the latents according to the noise magnitude at each timestep | |
| # (this is the forward diffusion process) | |
| noisy_latents = noise_scheduler.add_noise(noise_scheduler_state, latents, noise, timesteps) | |
| # Get the text embedding for conditioning | |
| encoder_hidden_states = text_encoder( | |
| minibatch["input_ids"], | |
| params=text_encoder_params, | |
| train=False, | |
| )[0] | |
| controlnet_cond = minibatch["conditioning_pixel_values"] | |
| # Predict the noise residual and compute loss | |
| down_block_res_samples, mid_block_res_sample = controlnet.apply( | |
| {"params": params}, | |
| noisy_latents, | |
| timesteps, | |
| encoder_hidden_states, | |
| controlnet_cond, | |
| train=True, | |
| return_dict=False, | |
| ) | |
| model_pred = unet.apply( | |
| {"params": unet_params}, | |
| noisy_latents, | |
| timesteps, | |
| encoder_hidden_states, | |
| down_block_additional_residuals=down_block_res_samples, | |
| mid_block_additional_residual=mid_block_res_sample, | |
| ).sample | |
| # Get the target for loss depending on the prediction type | |
| if noise_scheduler.config.prediction_type == "epsilon": | |
| target = noise | |
| elif noise_scheduler.config.prediction_type == "v_prediction": | |
| target = noise_scheduler.get_velocity(noise_scheduler_state, latents, noise, timesteps) | |
| else: | |
| raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") | |
| loss = (target - model_pred) ** 2 | |
| loss = loss.mean() | |
| return loss | |
| grad_fn = jax.value_and_grad(compute_loss) | |
| # get a minibatch (one gradient accumulation slice) | |
| def get_minibatch(batch, grad_idx): | |
| return jax.tree_util.tree_map( | |
| lambda x: jax.lax.dynamic_index_in_dim(x, grad_idx, keepdims=False), | |
| batch, | |
| ) | |
| def loss_and_grad(grad_idx, train_rng): | |
| # create minibatch for the grad step | |
| minibatch = get_minibatch(batch, grad_idx) if grad_idx is not None else batch | |
| sample_rng, train_rng = jax.random.split(train_rng, 2) | |
| loss, grad = grad_fn(state.params, minibatch, sample_rng) | |
| return loss, grad, train_rng | |
| if args.gradient_accumulation_steps == 1: | |
| loss, grad, new_train_rng = loss_and_grad(None, train_rng) | |
| else: | |
| init_loss_grad_rng = ( | |
| 0.0, # initial value for cumul_loss | |
| jax.tree_map(jnp.zeros_like, state.params), # initial value for cumul_grad | |
| train_rng, # initial value for train_rng | |
| ) | |
| def cumul_grad_step(grad_idx, loss_grad_rng): | |
| cumul_loss, cumul_grad, train_rng = loss_grad_rng | |
| loss, grad, new_train_rng = loss_and_grad(grad_idx, train_rng) | |
| cumul_loss, cumul_grad = jax.tree_map(jnp.add, (cumul_loss, cumul_grad), (loss, grad)) | |
| return cumul_loss, cumul_grad, new_train_rng | |
| loss, grad, new_train_rng = jax.lax.fori_loop( | |
| 0, | |
| args.gradient_accumulation_steps, | |
| cumul_grad_step, | |
| init_loss_grad_rng, | |
| ) | |
| loss, grad = jax.tree_map(lambda x: x / args.gradient_accumulation_steps, (loss, grad)) | |
| grad = jax.lax.pmean(grad, "batch") | |
| new_state = state.apply_gradients(grads=grad) | |
| metrics = {"loss": loss} | |
| metrics = jax.lax.pmean(metrics, axis_name="batch") | |
| return new_state, metrics, new_train_rng | |
| # Create parallel version of the train step | |
| p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,)) | |
| # Replicate the train state on each device | |
| state = jax_utils.replicate(state) | |
| unet_params = jax_utils.replicate(unet_params) | |
| text_encoder_params = jax_utils.replicate(text_encoder.params) | |
| vae_params = jax_utils.replicate(vae_params) | |
| # Train! | |
| if args.streaming: | |
| dataset_length = args.max_train_samples | |
| else: | |
| dataset_length = len(train_dataloader) | |
| num_update_steps_per_epoch = math.ceil(dataset_length / args.gradient_accumulation_steps) | |
| # Scheduler and math around the number of training steps. | |
| if args.max_train_steps is None: | |
| args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
| args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
| logger.info("***** Running training *****") | |
| logger.info(f" Num examples = {args.max_train_samples if args.streaming else len(train_dataset)}") | |
| logger.info(f" Num Epochs = {args.num_train_epochs}") | |
| logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | |
| logger.info(f" Total train batch size (w. parallel & distributed) = {total_train_batch_size}") | |
| logger.info(f" Total optimization steps = {args.num_train_epochs * num_update_steps_per_epoch}") | |
| if jax.process_index() == 0: | |
| wandb.define_metric("*", step_metric="train/step") | |
| wandb.config.update( | |
| { | |
| "num_train_examples": args.max_train_samples if args.streaming else len(train_dataset), | |
| "total_train_batch_size": total_train_batch_size, | |
| "total_optimization_step": args.num_train_epochs * num_update_steps_per_epoch, | |
| "num_devices": jax.device_count(), | |
| } | |
| ) | |
| global_step = 0 | |
| epochs = tqdm( | |
| range(args.num_train_epochs), | |
| desc="Epoch ... ", | |
| position=0, | |
| disable=jax.process_index() > 0, | |
| ) | |
| for epoch in epochs: | |
| # ======================== Training ================================ | |
| train_metrics = [] | |
| steps_per_epoch = ( | |
| args.max_train_samples // total_train_batch_size | |
| if args.streaming | |
| else len(train_dataset) // total_train_batch_size | |
| ) | |
| train_step_progress_bar = tqdm( | |
| total=steps_per_epoch, | |
| desc="Training...", | |
| position=1, | |
| leave=False, | |
| disable=jax.process_index() > 0, | |
| ) | |
| # train | |
| for batch in train_dataloader: | |
| batch = shard(batch) | |
| state, train_metric, train_rngs = p_train_step( | |
| state, unet_params, text_encoder_params, vae_params, batch, train_rngs | |
| ) | |
| train_metrics.append(train_metric) | |
| train_step_progress_bar.update(1) | |
| global_step += 1 | |
| if global_step >= args.max_train_steps: | |
| break | |
| if ( | |
| args.validation_prompt is not None | |
| and global_step % args.validation_steps == 0 | |
| and jax.process_index() == 0 | |
| ): | |
| _ = log_validation(controlnet, state.params, tokenizer, args, validation_rng, weight_dtype) | |
| if global_step % args.logging_steps == 0 and jax.process_index() == 0: | |
| if args.report_to == "wandb": | |
| wandb.log( | |
| { | |
| "train/step": global_step, | |
| "train/epoch": epoch, | |
| "train/loss": jax_utils.unreplicate(train_metric)["loss"], | |
| } | |
| ) | |
| train_metric = jax_utils.unreplicate(train_metric) | |
| train_step_progress_bar.close() | |
| epochs.write(f"Epoch... ({epoch + 1}/{args.num_train_epochs} | Loss: {train_metric['loss']})") | |
| # Create the pipeline using using the trained modules and save it. | |
| if jax.process_index() == 0: | |
| if args.validation_prompt is not None: | |
| image_logs = log_validation(controlnet, state.params, tokenizer, args, validation_rng, weight_dtype) | |
| controlnet.save_pretrained( | |
| args.output_dir, | |
| params=get_params_to_save(state.params), | |
| ) | |
| if args.push_to_hub: | |
| save_model_card( | |
| repo_id, | |
| image_logs=image_logs, | |
| base_model=args.pretrained_model_name_or_path, | |
| repo_folder=args.output_dir, | |
| ) | |
| upload_folder( | |
| repo_id=repo_id, | |
| folder_path=args.output_dir, | |
| commit_message="End of training", | |
| ignore_patterns=["step_*", "epoch_*"], | |
| ) | |
| if __name__ == "__main__": | |
| main() | |