Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024 ChatGLM3-6B Model Team, Kwai-Kolors Team and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import json | |
| import os | |
| import re | |
| from typing import Dict, List, Optional, Union | |
| from sentencepiece import SentencePieceProcessor | |
| from transformers import PreTrainedTokenizer | |
| from transformers.tokenization_utils_base import BatchEncoding, EncodedInput | |
| from transformers.utils import PaddingStrategy | |
| class SPTokenizer: | |
| def __init__(self, model_path: str): | |
| # reload tokenizer | |
| assert os.path.isfile(model_path), model_path | |
| self.sp_model = SentencePieceProcessor(model_file=model_path) | |
| # BOS / EOS token IDs | |
| self.n_words: int = self.sp_model.vocab_size() | |
| self.bos_id: int = self.sp_model.bos_id() | |
| self.eos_id: int = self.sp_model.eos_id() | |
| self.pad_id: int = self.sp_model.unk_id() | |
| assert self.sp_model.vocab_size() == self.sp_model.get_piece_size() | |
| role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"] | |
| special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens | |
| self.special_tokens = {} | |
| self.index_special_tokens = {} | |
| for token in special_tokens: | |
| self.special_tokens[token] = self.n_words | |
| self.index_special_tokens[self.n_words] = token | |
| self.n_words += 1 | |
| self.role_special_token_expression = "|".join([re.escape(token) for token in role_special_tokens]) | |
| def tokenize(self, s: str, encode_special_tokens=False): | |
| if encode_special_tokens: | |
| last_index = 0 | |
| t = [] | |
| for match in re.finditer(self.role_special_token_expression, s): | |
| if last_index < match.start(): | |
| t.extend(self.sp_model.EncodeAsPieces(s[last_index : match.start()])) | |
| t.append(s[match.start() : match.end()]) | |
| last_index = match.end() | |
| if last_index < len(s): | |
| t.extend(self.sp_model.EncodeAsPieces(s[last_index:])) | |
| return t | |
| else: | |
| return self.sp_model.EncodeAsPieces(s) | |
| def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]: | |
| assert isinstance(s, str) | |
| t = self.sp_model.encode(s) | |
| if bos: | |
| t = [self.bos_id] + t | |
| if eos: | |
| t = t + [self.eos_id] | |
| return t | |
| def decode(self, t: List[int]) -> str: | |
| text, buffer = "", [] | |
| for token in t: | |
| if token in self.index_special_tokens: | |
| if buffer: | |
| text += self.sp_model.decode(buffer) | |
| buffer = [] | |
| text += self.index_special_tokens[token] | |
| else: | |
| buffer.append(token) | |
| if buffer: | |
| text += self.sp_model.decode(buffer) | |
| return text | |
| def decode_tokens(self, tokens: List[str]) -> str: | |
| text = self.sp_model.DecodePieces(tokens) | |
| return text | |
| def convert_token_to_id(self, token): | |
| """Converts a token (str) in an id using the vocab.""" | |
| if token in self.special_tokens: | |
| return self.special_tokens[token] | |
| return self.sp_model.PieceToId(token) | |
| def convert_id_to_token(self, index): | |
| """Converts an index (integer) in a token (str) using the vocab.""" | |
| if index in self.index_special_tokens: | |
| return self.index_special_tokens[index] | |
| if index in [self.eos_id, self.bos_id, self.pad_id] or index < 0: | |
| return "" | |
| return self.sp_model.IdToPiece(index) | |
| class ChatGLMTokenizer(PreTrainedTokenizer): | |
| vocab_files_names = {"vocab_file": "tokenizer.model"} | |
| model_input_names = ["input_ids", "attention_mask", "position_ids"] | |
| def __init__( | |
| self, | |
| vocab_file, | |
| padding_side="left", | |
| clean_up_tokenization_spaces=False, | |
| encode_special_tokens=False, | |
| **kwargs, | |
| ): | |
| self.name = "GLMTokenizer" | |
| self.vocab_file = vocab_file | |
| self.tokenizer = SPTokenizer(vocab_file) | |
| self.special_tokens = { | |
| "<bos>": self.tokenizer.bos_id, | |
| "<eos>": self.tokenizer.eos_id, | |
| "<pad>": self.tokenizer.pad_id, | |
| } | |
| self.encode_special_tokens = encode_special_tokens | |
| super().__init__( | |
| padding_side=padding_side, | |
| clean_up_tokenization_spaces=clean_up_tokenization_spaces, | |
| encode_special_tokens=encode_special_tokens, | |
| **kwargs, | |
| ) | |
| def get_command(self, token): | |
| if token in self.special_tokens: | |
| return self.special_tokens[token] | |
| assert token in self.tokenizer.special_tokens, f"{token} is not a special token for {self.name}" | |
| return self.tokenizer.special_tokens[token] | |
| def unk_token(self) -> str: | |
| return "<unk>" | |
| def unk_token(self, value: str): | |
| self._unk_token = value | |
| def pad_token(self) -> str: | |
| return "<unk>" | |
| def pad_token(self, value: str): | |
| self._pad_token = value | |
| def pad_token_id(self): | |
| return self.get_command("<pad>") | |
| def eos_token(self) -> str: | |
| return "</s>" | |
| def eos_token(self, value: str): | |
| self._eos_token = value | |
| def eos_token_id(self): | |
| return self.get_command("<eos>") | |
| def vocab_size(self): | |
| return self.tokenizer.n_words | |
| def get_vocab(self): | |
| """Returns vocab as a dict""" | |
| vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)} | |
| vocab.update(self.added_tokens_encoder) | |
| return vocab | |
| def _tokenize(self, text, **kwargs): | |
| return self.tokenizer.tokenize(text, encode_special_tokens=self.encode_special_tokens) | |
| def _convert_token_to_id(self, token): | |
| """Converts a token (str) in an id using the vocab.""" | |
| return self.tokenizer.convert_token_to_id(token) | |
| def _convert_id_to_token(self, index): | |
| """Converts an index (integer) in a token (str) using the vocab.""" | |
| return self.tokenizer.convert_id_to_token(index) | |
| def convert_tokens_to_string(self, tokens: List[str]) -> str: | |
| return self.tokenizer.decode_tokens(tokens) | |
| def save_vocabulary(self, save_directory, filename_prefix=None): | |
| """ | |
| Save the vocabulary and special tokens file to a directory. | |
| Args: | |
| save_directory (`str`): | |
| The directory in which to save the vocabulary. | |
| filename_prefix (`str`, *optional*): | |
| An optional prefix to add to the named of the saved files. | |
| Returns: | |
| `Tuple(str)`: Paths to the files saved. | |
| """ | |
| if os.path.isdir(save_directory): | |
| vocab_file = os.path.join(save_directory, self.vocab_files_names["vocab_file"]) | |
| else: | |
| vocab_file = save_directory | |
| with open(self.vocab_file, "rb") as fin: | |
| proto_str = fin.read() | |
| with open(vocab_file, "wb") as writer: | |
| writer.write(proto_str) | |
| return (vocab_file,) | |
| def get_prefix_tokens(self): | |
| prefix_tokens = [self.get_command("[gMASK]"), self.get_command("sop")] | |
| return prefix_tokens | |
| def build_single_message(self, role, metadata, message): | |
| assert role in ["system", "user", "assistant", "observation"], role | |
| role_tokens = [self.get_command(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n") | |
| message_tokens = self.tokenizer.encode(message) | |
| tokens = role_tokens + message_tokens | |
| return tokens | |
| def build_chat_input(self, query, history=None, role="user"): | |
| if history is None: | |
| history = [] | |
| input_ids = [] | |
| for item in history: | |
| content = item["content"] | |
| if item["role"] == "system" and "tools" in item: | |
| content = content + "\n" + json.dumps(item["tools"], indent=4, ensure_ascii=False) | |
| input_ids.extend(self.build_single_message(item["role"], item.get("metadata", ""), content)) | |
| input_ids.extend(self.build_single_message(role, "", query)) | |
| input_ids.extend([self.get_command("<|assistant|>")]) | |
| return self.batch_encode_plus([input_ids], return_tensors="pt", is_split_into_words=True) | |
| def build_inputs_with_special_tokens( | |
| self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
| ) -> List[int]: | |
| """ | |
| Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and | |
| adding special tokens. A BERT sequence has the following format: | |
| - single sequence: `[CLS] X [SEP]` | |
| - pair of sequences: `[CLS] A [SEP] B [SEP]` | |
| Args: | |
| token_ids_0 (`List[int]`): | |
| List of IDs to which the special tokens will be added. | |
| token_ids_1 (`List[int]`, *optional*): | |
| Optional second list of IDs for sequence pairs. | |
| Returns: | |
| `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. | |
| """ | |
| prefix_tokens = self.get_prefix_tokens() | |
| token_ids_0 = prefix_tokens + token_ids_0 | |
| if token_ids_1 is not None: | |
| token_ids_0 = token_ids_0 + token_ids_1 + [self.get_command("<eos>")] | |
| return token_ids_0 | |
| def _pad( | |
| self, | |
| encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], | |
| max_length: Optional[int] = None, | |
| padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, | |
| pad_to_multiple_of: Optional[int] = None, | |
| return_attention_mask: Optional[bool] = None, | |
| ) -> dict: | |
| """ | |
| Pad encoded inputs (on left/right and up to predefined length or max length in the batch) | |
| Args: | |
| encoded_inputs: | |
| Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). | |
| max_length: maximum length of the returned list and optionally padding length (see below). | |
| Will truncate by taking into account the special tokens. | |
| padding_strategy: PaddingStrategy to use for padding. | |
| - PaddingStrategy.LONGEST Pad to the longest sequence in the batch | |
| - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) | |
| - PaddingStrategy.DO_NOT_PAD: Do not pad | |
| The tokenizer padding sides are defined in self.padding_side: | |
| - 'left': pads on the left of the sequences | |
| - 'right': pads on the right of the sequences | |
| pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. | |
| This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability | |
| `>= 7.5` (Volta). | |
| return_attention_mask: | |
| (optional) Set to False to avoid returning attention mask (default: set to model specifics) | |
| """ | |
| # Load from model defaults | |
| assert self.padding_side == "left" | |
| required_input = encoded_inputs[self.model_input_names[0]] | |
| seq_length = len(required_input) | |
| if padding_strategy == PaddingStrategy.LONGEST: | |
| max_length = len(required_input) | |
| if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): | |
| max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of | |
| needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length | |
| # Initialize attention mask if not present. | |
| if "attention_mask" not in encoded_inputs: | |
| encoded_inputs["attention_mask"] = [1] * seq_length | |
| if "position_ids" not in encoded_inputs: | |
| encoded_inputs["position_ids"] = list(range(seq_length)) | |
| if needs_to_be_padded: | |
| difference = max_length - len(required_input) | |
| if "attention_mask" in encoded_inputs: | |
| encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] | |
| if "position_ids" in encoded_inputs: | |
| encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"] | |
| encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input | |
| return encoded_inputs | |