Spaces:
Running
on
Zero
Running
on
Zero
| #!/usr/bin/env python | |
| # coding=utf-8 | |
| # Copyright 2023 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| Adapted from | |
| https://github.com/huggingface/transformers/blob/52cb4034ada381fe1ffe8d428a1076e5411a8026/src/transformers/utils/quantization_config.py | |
| """ | |
| import copy | |
| import importlib.metadata | |
| import json | |
| import os | |
| from dataclasses import dataclass | |
| from enum import Enum | |
| from typing import Any, Dict, Union | |
| from packaging import version | |
| from ..utils import is_torch_available, logging | |
| if is_torch_available(): | |
| import torch | |
| logger = logging.get_logger(__name__) | |
| class QuantizationMethod(str, Enum): | |
| BITS_AND_BYTES = "bitsandbytes" | |
| class QuantizationConfigMixin: | |
| """ | |
| Mixin class for quantization config | |
| """ | |
| quant_method: QuantizationMethod | |
| _exclude_attributes_at_init = [] | |
| def from_dict(cls, config_dict, return_unused_kwargs=False, **kwargs): | |
| """ | |
| Instantiates a [`QuantizationConfigMixin`] from a Python dictionary of parameters. | |
| Args: | |
| config_dict (`Dict[str, Any]`): | |
| Dictionary that will be used to instantiate the configuration object. | |
| return_unused_kwargs (`bool`,*optional*, defaults to `False`): | |
| Whether or not to return a list of unused keyword arguments. Used for `from_pretrained` method in | |
| `PreTrainedModel`. | |
| kwargs (`Dict[str, Any]`): | |
| Additional parameters from which to initialize the configuration object. | |
| Returns: | |
| [`QuantizationConfigMixin`]: The configuration object instantiated from those parameters. | |
| """ | |
| config = cls(**config_dict) | |
| to_remove = [] | |
| for key, value in kwargs.items(): | |
| if hasattr(config, key): | |
| setattr(config, key, value) | |
| to_remove.append(key) | |
| for key in to_remove: | |
| kwargs.pop(key, None) | |
| if return_unused_kwargs: | |
| return config, kwargs | |
| else: | |
| return config | |
| def to_json_file(self, json_file_path: Union[str, os.PathLike]): | |
| """ | |
| Save this instance to a JSON file. | |
| Args: | |
| json_file_path (`str` or `os.PathLike`): | |
| Path to the JSON file in which this configuration instance's parameters will be saved. | |
| use_diff (`bool`, *optional*, defaults to `True`): | |
| If set to `True`, only the difference between the config instance and the default | |
| `QuantizationConfig()` is serialized to JSON file. | |
| """ | |
| with open(json_file_path, "w", encoding="utf-8") as writer: | |
| config_dict = self.to_dict() | |
| json_string = json.dumps(config_dict, indent=2, sort_keys=True) + "\n" | |
| writer.write(json_string) | |
| def to_dict(self) -> Dict[str, Any]: | |
| """ | |
| Serializes this instance to a Python dictionary. Returns: | |
| `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance. | |
| """ | |
| return copy.deepcopy(self.__dict__) | |
| def __iter__(self): | |
| """allows `dict(obj)` for situations where obj may be a dict or QuantizationConfigMixin""" | |
| for attr, value in copy.deepcopy(self.__dict__).items(): | |
| yield attr, value | |
| def __repr__(self): | |
| return f"{self.__class__.__name__} {self.to_json_string()}" | |
| def to_json_string(self, use_diff: bool = True) -> str: | |
| """ | |
| Serializes this instance to a JSON string. | |
| Args: | |
| use_diff (`bool`, *optional*, defaults to `True`): | |
| If set to `True`, only the difference between the config instance and the default `PretrainedConfig()` | |
| is serialized to JSON string. | |
| Returns: | |
| `str`: String containing all the attributes that make up this configuration instance in JSON format. | |
| """ | |
| if use_diff is True: | |
| config_dict = self.to_diff_dict() | |
| else: | |
| config_dict = self.to_dict() | |
| return json.dumps(config_dict, indent=2, sort_keys=True) + "\n" | |
| def update(self, **kwargs): | |
| """ | |
| Updates attributes of this class instance with attributes from `kwargs` if they match existing attributes, | |
| returning all the unused kwargs. | |
| Args: | |
| kwargs (`Dict[str, Any]`): | |
| Dictionary of attributes to tentatively update this class. | |
| Returns: | |
| `Dict[str, Any]`: Dictionary containing all the key-value pairs that were not used to update the instance. | |
| """ | |
| to_remove = [] | |
| for key, value in kwargs.items(): | |
| if hasattr(self, key): | |
| setattr(self, key, value) | |
| to_remove.append(key) | |
| # Remove all the attributes that were updated, without modifying the input dict | |
| unused_kwargs = {key: value for key, value in kwargs.items() if key not in to_remove} | |
| return unused_kwargs | |
| class BitsAndBytesConfig(QuantizationConfigMixin): | |
| """ | |
| This is a wrapper class about all possible attributes and features that you can play with a model that has been | |
| loaded using `bitsandbytes`. | |
| This replaces `load_in_8bit` or `load_in_4bit`therefore both options are mutually exclusive. | |
| Currently only supports `LLM.int8()`, `FP4`, and `NF4` quantization. If more methods are added to `bitsandbytes`, | |
| then more arguments will be added to this class. | |
| Args: | |
| load_in_8bit (`bool`, *optional*, defaults to `False`): | |
| This flag is used to enable 8-bit quantization with LLM.int8(). | |
| load_in_4bit (`bool`, *optional*, defaults to `False`): | |
| This flag is used to enable 4-bit quantization by replacing the Linear layers with FP4/NF4 layers from | |
| `bitsandbytes`. | |
| llm_int8_threshold (`float`, *optional*, defaults to 6.0): | |
| This corresponds to the outlier threshold for outlier detection as described in `LLM.int8() : 8-bit Matrix | |
| Multiplication for Transformers at Scale` paper: https://arxiv.org/abs/2208.07339 Any hidden states value | |
| that is above this threshold will be considered an outlier and the operation on those values will be done | |
| in fp16. Values are usually normally distributed, that is, most values are in the range [-3.5, 3.5], but | |
| there are some exceptional systematic outliers that are very differently distributed for large models. | |
| These outliers are often in the interval [-60, -6] or [6, 60]. Int8 quantization works well for values of | |
| magnitude ~5, but beyond that, there is a significant performance penalty. A good default threshold is 6, | |
| but a lower threshold might be needed for more unstable models (small models, fine-tuning). | |
| llm_int8_skip_modules (`List[str]`, *optional*): | |
| An explicit list of the modules that we do not want to convert in 8-bit. This is useful for models such as | |
| Jukebox that has several heads in different places and not necessarily at the last position. For example | |
| for `CausalLM` models, the last `lm_head` is typically kept in its original `dtype`. | |
| llm_int8_enable_fp32_cpu_offload (`bool`, *optional*, defaults to `False`): | |
| This flag is used for advanced use cases and users that are aware of this feature. If you want to split | |
| your model in different parts and run some parts in int8 on GPU and some parts in fp32 on CPU, you can use | |
| this flag. This is useful for offloading large models such as `google/flan-t5-xxl`. Note that the int8 | |
| operations will not be run on CPU. | |
| llm_int8_has_fp16_weight (`bool`, *optional*, defaults to `False`): | |
| This flag runs LLM.int8() with 16-bit main weights. This is useful for fine-tuning as the weights do not | |
| have to be converted back and forth for the backward pass. | |
| bnb_4bit_compute_dtype (`torch.dtype` or str, *optional*, defaults to `torch.float32`): | |
| This sets the computational type which might be different than the input type. For example, inputs might be | |
| fp32, but computation can be set to bf16 for speedups. | |
| bnb_4bit_quant_type (`str`, *optional*, defaults to `"fp4"`): | |
| This sets the quantization data type in the bnb.nn.Linear4Bit layers. Options are FP4 and NF4 data types | |
| which are specified by `fp4` or `nf4`. | |
| bnb_4bit_use_double_quant (`bool`, *optional*, defaults to `False`): | |
| This flag is used for nested quantization where the quantization constants from the first quantization are | |
| quantized again. | |
| bnb_4bit_quant_storage (`torch.dtype` or str, *optional*, defaults to `torch.uint8`): | |
| This sets the storage type to pack the quanitzed 4-bit prarams. | |
| kwargs (`Dict[str, Any]`, *optional*): | |
| Additional parameters from which to initialize the configuration object. | |
| """ | |
| _exclude_attributes_at_init = ["_load_in_4bit", "_load_in_8bit", "quant_method"] | |
| def __init__( | |
| self, | |
| load_in_8bit=False, | |
| load_in_4bit=False, | |
| llm_int8_threshold=6.0, | |
| llm_int8_skip_modules=None, | |
| llm_int8_enable_fp32_cpu_offload=False, | |
| llm_int8_has_fp16_weight=False, | |
| bnb_4bit_compute_dtype=None, | |
| bnb_4bit_quant_type="fp4", | |
| bnb_4bit_use_double_quant=False, | |
| bnb_4bit_quant_storage=None, | |
| **kwargs, | |
| ): | |
| self.quant_method = QuantizationMethod.BITS_AND_BYTES | |
| if load_in_4bit and load_in_8bit: | |
| raise ValueError("load_in_4bit and load_in_8bit are both True, but only one can be used at the same time") | |
| self._load_in_8bit = load_in_8bit | |
| self._load_in_4bit = load_in_4bit | |
| self.llm_int8_threshold = llm_int8_threshold | |
| self.llm_int8_skip_modules = llm_int8_skip_modules | |
| self.llm_int8_enable_fp32_cpu_offload = llm_int8_enable_fp32_cpu_offload | |
| self.llm_int8_has_fp16_weight = llm_int8_has_fp16_weight | |
| self.bnb_4bit_quant_type = bnb_4bit_quant_type | |
| self.bnb_4bit_use_double_quant = bnb_4bit_use_double_quant | |
| if bnb_4bit_compute_dtype is None: | |
| self.bnb_4bit_compute_dtype = torch.float32 | |
| elif isinstance(bnb_4bit_compute_dtype, str): | |
| self.bnb_4bit_compute_dtype = getattr(torch, bnb_4bit_compute_dtype) | |
| elif isinstance(bnb_4bit_compute_dtype, torch.dtype): | |
| self.bnb_4bit_compute_dtype = bnb_4bit_compute_dtype | |
| else: | |
| raise ValueError("bnb_4bit_compute_dtype must be a string or a torch.dtype") | |
| if bnb_4bit_quant_storage is None: | |
| self.bnb_4bit_quant_storage = torch.uint8 | |
| elif isinstance(bnb_4bit_quant_storage, str): | |
| if bnb_4bit_quant_storage not in ["float16", "float32", "int8", "uint8", "float64", "bfloat16"]: | |
| raise ValueError( | |
| "`bnb_4bit_quant_storage` must be a valid string (one of 'float16', 'float32', 'int8', 'uint8', 'float64', 'bfloat16') " | |
| ) | |
| self.bnb_4bit_quant_storage = getattr(torch, bnb_4bit_quant_storage) | |
| elif isinstance(bnb_4bit_quant_storage, torch.dtype): | |
| self.bnb_4bit_quant_storage = bnb_4bit_quant_storage | |
| else: | |
| raise ValueError("bnb_4bit_quant_storage must be a string or a torch.dtype") | |
| if kwargs and not all(k in self._exclude_attributes_at_init for k in kwargs): | |
| logger.warning(f"Unused kwargs: {list(kwargs.keys())}. These kwargs are not used in {self.__class__}.") | |
| self.post_init() | |
| def load_in_4bit(self): | |
| return self._load_in_4bit | |
| def load_in_4bit(self, value: bool): | |
| if not isinstance(value, bool): | |
| raise TypeError("load_in_4bit must be a boolean") | |
| if self.load_in_8bit and value: | |
| raise ValueError("load_in_4bit and load_in_8bit are both True, but only one can be used at the same time") | |
| self._load_in_4bit = value | |
| def load_in_8bit(self): | |
| return self._load_in_8bit | |
| def load_in_8bit(self, value: bool): | |
| if not isinstance(value, bool): | |
| raise TypeError("load_in_8bit must be a boolean") | |
| if self.load_in_4bit and value: | |
| raise ValueError("load_in_4bit and load_in_8bit are both True, but only one can be used at the same time") | |
| self._load_in_8bit = value | |
| def post_init(self): | |
| r""" | |
| Safety checker that arguments are correct - also replaces some NoneType arguments with their default values. | |
| """ | |
| if not isinstance(self.load_in_4bit, bool): | |
| raise TypeError("load_in_4bit must be a boolean") | |
| if not isinstance(self.load_in_8bit, bool): | |
| raise TypeError("load_in_8bit must be a boolean") | |
| if not isinstance(self.llm_int8_threshold, float): | |
| raise TypeError("llm_int8_threshold must be a float") | |
| if self.llm_int8_skip_modules is not None and not isinstance(self.llm_int8_skip_modules, list): | |
| raise TypeError("llm_int8_skip_modules must be a list of strings") | |
| if not isinstance(self.llm_int8_enable_fp32_cpu_offload, bool): | |
| raise TypeError("llm_int8_enable_fp32_cpu_offload must be a boolean") | |
| if not isinstance(self.llm_int8_has_fp16_weight, bool): | |
| raise TypeError("llm_int8_has_fp16_weight must be a boolean") | |
| if self.bnb_4bit_compute_dtype is not None and not isinstance(self.bnb_4bit_compute_dtype, torch.dtype): | |
| raise TypeError("bnb_4bit_compute_dtype must be torch.dtype") | |
| if not isinstance(self.bnb_4bit_quant_type, str): | |
| raise TypeError("bnb_4bit_quant_type must be a string") | |
| if not isinstance(self.bnb_4bit_use_double_quant, bool): | |
| raise TypeError("bnb_4bit_use_double_quant must be a boolean") | |
| if self.load_in_4bit and not version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse( | |
| "0.39.0" | |
| ): | |
| raise ValueError( | |
| "4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version" | |
| ) | |
| def is_quantizable(self): | |
| r""" | |
| Returns `True` if the model is quantizable, `False` otherwise. | |
| """ | |
| return self.load_in_8bit or self.load_in_4bit | |
| def quantization_method(self): | |
| r""" | |
| This method returns the quantization method used for the model. If the model is not quantizable, it returns | |
| `None`. | |
| """ | |
| if self.load_in_8bit: | |
| return "llm_int8" | |
| elif self.load_in_4bit and self.bnb_4bit_quant_type == "fp4": | |
| return "fp4" | |
| elif self.load_in_4bit and self.bnb_4bit_quant_type == "nf4": | |
| return "nf4" | |
| else: | |
| return None | |
| def to_dict(self) -> Dict[str, Any]: | |
| """ | |
| Serializes this instance to a Python dictionary. Returns: | |
| `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance. | |
| """ | |
| output = copy.deepcopy(self.__dict__) | |
| output["bnb_4bit_compute_dtype"] = str(output["bnb_4bit_compute_dtype"]).split(".")[1] | |
| output["bnb_4bit_quant_storage"] = str(output["bnb_4bit_quant_storage"]).split(".")[1] | |
| output["load_in_4bit"] = self.load_in_4bit | |
| output["load_in_8bit"] = self.load_in_8bit | |
| return output | |
| def __repr__(self): | |
| config_dict = self.to_dict() | |
| return f"{self.__class__.__name__} {json.dumps(config_dict, indent=2, sort_keys=True)}\n" | |
| def to_diff_dict(self) -> Dict[str, Any]: | |
| """ | |
| Removes all attributes from config which correspond to the default config attributes for better readability and | |
| serializes to a Python dictionary. | |
| Returns: | |
| `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance, | |
| """ | |
| config_dict = self.to_dict() | |
| # get the default config dict | |
| default_config_dict = BitsAndBytesConfig().to_dict() | |
| serializable_config_dict = {} | |
| # only serialize values that differ from the default config | |
| for key, value in config_dict.items(): | |
| if value != default_config_dict[key]: | |
| serializable_config_dict[key] = value | |
| return serializable_config_dict | |