Spaces:
Running
on
Zero
Running
on
Zero
| # coding=utf-8 | |
| # Copyright 2024 The HuggingFace Inc. team. | |
| # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| import itertools | |
| import json | |
| import os | |
| import re | |
| from collections import OrderedDict | |
| from functools import partial | |
| from pathlib import Path | |
| from typing import Any, Callable, List, Optional, Tuple, Union | |
| import safetensors | |
| import torch | |
| from huggingface_hub import create_repo, split_torch_state_dict_into_shards | |
| from huggingface_hub.utils import validate_hf_hub_args | |
| from torch import Tensor, nn | |
| from .. import __version__ | |
| from ..utils import ( | |
| CONFIG_NAME, | |
| FLAX_WEIGHTS_NAME, | |
| SAFE_WEIGHTS_INDEX_NAME, | |
| SAFETENSORS_WEIGHTS_NAME, | |
| WEIGHTS_INDEX_NAME, | |
| WEIGHTS_NAME, | |
| _add_variant, | |
| _get_checkpoint_shard_files, | |
| _get_model_file, | |
| deprecate, | |
| is_accelerate_available, | |
| is_torch_version, | |
| logging, | |
| ) | |
| from ..utils.hub_utils import ( | |
| PushToHubMixin, | |
| load_or_create_model_card, | |
| populate_model_card, | |
| ) | |
| from .model_loading_utils import ( | |
| _determine_device_map, | |
| _fetch_index_file, | |
| _load_state_dict_into_model, | |
| load_model_dict_into_meta, | |
| load_state_dict, | |
| ) | |
| logger = logging.get_logger(__name__) | |
| _REGEX_SHARD = re.compile(r"(.*?)-\d{5}-of-\d{5}") | |
| if is_torch_version(">=", "1.9.0"): | |
| _LOW_CPU_MEM_USAGE_DEFAULT = True | |
| else: | |
| _LOW_CPU_MEM_USAGE_DEFAULT = False | |
| if is_accelerate_available(): | |
| import accelerate | |
| def get_parameter_device(parameter: torch.nn.Module) -> torch.device: | |
| try: | |
| parameters_and_buffers = itertools.chain(parameter.parameters(), parameter.buffers()) | |
| return next(parameters_and_buffers).device | |
| except StopIteration: | |
| # For torch.nn.DataParallel compatibility in PyTorch 1.5 | |
| def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]: | |
| tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)] | |
| return tuples | |
| gen = parameter._named_members(get_members_fn=find_tensor_attributes) | |
| first_tuple = next(gen) | |
| return first_tuple[1].device | |
| def get_parameter_dtype(parameter: torch.nn.Module) -> torch.dtype: | |
| try: | |
| params = tuple(parameter.parameters()) | |
| if len(params) > 0: | |
| return params[0].dtype | |
| buffers = tuple(parameter.buffers()) | |
| if len(buffers) > 0: | |
| return buffers[0].dtype | |
| except StopIteration: | |
| # For torch.nn.DataParallel compatibility in PyTorch 1.5 | |
| def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]: | |
| tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)] | |
| return tuples | |
| gen = parameter._named_members(get_members_fn=find_tensor_attributes) | |
| first_tuple = next(gen) | |
| return first_tuple[1].dtype | |
| class ModelMixin(torch.nn.Module, PushToHubMixin): | |
| r""" | |
| Base class for all models. | |
| [`ModelMixin`] takes care of storing the model configuration and provides methods for loading, downloading and | |
| saving models. | |
| - **config_name** ([`str`]) -- Filename to save a model to when calling [`~models.ModelMixin.save_pretrained`]. | |
| """ | |
| config_name = CONFIG_NAME | |
| _automatically_saved_args = ["_diffusers_version", "_class_name", "_name_or_path"] | |
| _supports_gradient_checkpointing = False | |
| _keys_to_ignore_on_load_unexpected = None | |
| _no_split_modules = None | |
| def __init__(self): | |
| super().__init__() | |
| def __getattr__(self, name: str) -> Any: | |
| """The only reason we overwrite `getattr` here is to gracefully deprecate accessing | |
| config attributes directly. See https://github.com/huggingface/diffusers/pull/3129 We need to overwrite | |
| __getattr__ here in addition so that we don't trigger `torch.nn.Module`'s __getattr__': | |
| https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module | |
| """ | |
| is_in_config = "_internal_dict" in self.__dict__ and hasattr(self.__dict__["_internal_dict"], name) | |
| is_attribute = name in self.__dict__ | |
| if is_in_config and not is_attribute: | |
| deprecation_message = f"Accessing config attribute `{name}` directly via '{type(self).__name__}' object attribute is deprecated. Please access '{name}' over '{type(self).__name__}'s config object instead, e.g. 'unet.config.{name}'." | |
| deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False, stacklevel=3) | |
| return self._internal_dict[name] | |
| # call PyTorch's https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module | |
| return super().__getattr__(name) | |
| def is_gradient_checkpointing(self) -> bool: | |
| """ | |
| Whether gradient checkpointing is activated for this model or not. | |
| """ | |
| return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules()) | |
| def enable_gradient_checkpointing(self) -> None: | |
| """ | |
| Activates gradient checkpointing for the current model (may be referred to as *activation checkpointing* or | |
| *checkpoint activations* in other frameworks). | |
| """ | |
| if not self._supports_gradient_checkpointing: | |
| raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.") | |
| self.apply(partial(self._set_gradient_checkpointing, value=True)) | |
| def disable_gradient_checkpointing(self) -> None: | |
| """ | |
| Deactivates gradient checkpointing for the current model (may be referred to as *activation checkpointing* or | |
| *checkpoint activations* in other frameworks). | |
| """ | |
| if self._supports_gradient_checkpointing: | |
| self.apply(partial(self._set_gradient_checkpointing, value=False)) | |
| def set_use_npu_flash_attention(self, valid: bool) -> None: | |
| r""" | |
| Set the switch for the npu flash attention. | |
| """ | |
| def fn_recursive_set_npu_flash_attention(module: torch.nn.Module): | |
| if hasattr(module, "set_use_npu_flash_attention"): | |
| module.set_use_npu_flash_attention(valid) | |
| for child in module.children(): | |
| fn_recursive_set_npu_flash_attention(child) | |
| for module in self.children(): | |
| if isinstance(module, torch.nn.Module): | |
| fn_recursive_set_npu_flash_attention(module) | |
| def enable_npu_flash_attention(self) -> None: | |
| r""" | |
| Enable npu flash attention from torch_npu | |
| """ | |
| self.set_use_npu_flash_attention(True) | |
| def disable_npu_flash_attention(self) -> None: | |
| r""" | |
| disable npu flash attention from torch_npu | |
| """ | |
| self.set_use_npu_flash_attention(False) | |
| def set_use_memory_efficient_attention_xformers( | |
| self, valid: bool, attention_op: Optional[Callable] = None | |
| ) -> None: | |
| # Recursively walk through all the children. | |
| # Any children which exposes the set_use_memory_efficient_attention_xformers method | |
| # gets the message | |
| def fn_recursive_set_mem_eff(module: torch.nn.Module): | |
| if hasattr(module, "set_use_memory_efficient_attention_xformers"): | |
| module.set_use_memory_efficient_attention_xformers(valid, attention_op) | |
| for child in module.children(): | |
| fn_recursive_set_mem_eff(child) | |
| for module in self.children(): | |
| if isinstance(module, torch.nn.Module): | |
| fn_recursive_set_mem_eff(module) | |
| def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None) -> None: | |
| r""" | |
| Enable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/). | |
| When this option is enabled, you should observe lower GPU memory usage and a potential speed up during | |
| inference. Speed up during training is not guaranteed. | |
| <Tip warning={true}> | |
| ⚠️ When memory efficient attention and sliced attention are both enabled, memory efficient attention takes | |
| precedent. | |
| </Tip> | |
| Parameters: | |
| attention_op (`Callable`, *optional*): | |
| Override the default `None` operator for use as `op` argument to the | |
| [`memory_efficient_attention()`](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.memory_efficient_attention) | |
| function of xFormers. | |
| Examples: | |
| ```py | |
| >>> import torch | |
| >>> from diffusers import UNet2DConditionModel | |
| >>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp | |
| >>> model = UNet2DConditionModel.from_pretrained( | |
| ... "stabilityai/stable-diffusion-2-1", subfolder="unet", torch_dtype=torch.float16 | |
| ... ) | |
| >>> model = model.to("cuda") | |
| >>> model.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp) | |
| ``` | |
| """ | |
| self.set_use_memory_efficient_attention_xformers(True, attention_op) | |
| def disable_xformers_memory_efficient_attention(self) -> None: | |
| r""" | |
| Disable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/). | |
| """ | |
| self.set_use_memory_efficient_attention_xformers(False) | |
| def save_pretrained( | |
| self, | |
| save_directory: Union[str, os.PathLike], | |
| is_main_process: bool = True, | |
| save_function: Optional[Callable] = None, | |
| safe_serialization: bool = True, | |
| variant: Optional[str] = None, | |
| max_shard_size: Union[int, str] = "10GB", | |
| push_to_hub: bool = False, | |
| **kwargs, | |
| ): | |
| """ | |
| Save a model and its configuration file to a directory so that it can be reloaded using the | |
| [`~models.ModelMixin.from_pretrained`] class method. | |
| Arguments: | |
| save_directory (`str` or `os.PathLike`): | |
| Directory to save a model and its configuration file to. Will be created if it doesn't exist. | |
| is_main_process (`bool`, *optional*, defaults to `True`): | |
| Whether the process calling this is the main process or not. Useful during distributed training and you | |
| need to call this function on all processes. In this case, set `is_main_process=True` only on the main | |
| process to avoid race conditions. | |
| save_function (`Callable`): | |
| The function to use to save the state dictionary. Useful during distributed training when you need to | |
| replace `torch.save` with another method. Can be configured with the environment variable | |
| `DIFFUSERS_SAVE_MODE`. | |
| safe_serialization (`bool`, *optional*, defaults to `True`): | |
| Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. | |
| variant (`str`, *optional*): | |
| If specified, weights are saved in the format `pytorch_model.<variant>.bin`. | |
| max_shard_size (`int` or `str`, defaults to `"10GB"`): | |
| The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size | |
| lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5GB"`). | |
| If expressed as an integer, the unit is bytes. Note that this limit will be decreased after a certain | |
| period of time (starting from Oct 2024) to allow users to upgrade to the latest version of `diffusers`. | |
| This is to establish a common default size for this argument across different libraries in the Hugging | |
| Face ecosystem (`transformers`, and `accelerate`, for example). | |
| push_to_hub (`bool`, *optional*, defaults to `False`): | |
| Whether or not to push your model to the Hugging Face Hub after saving it. You can specify the | |
| repository you want to push to with `repo_id` (will default to the name of `save_directory` in your | |
| namespace). | |
| kwargs (`Dict[str, Any]`, *optional*): | |
| Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. | |
| """ | |
| if os.path.isfile(save_directory): | |
| logger.error(f"Provided path ({save_directory}) should be a directory, not a file") | |
| return | |
| weights_name = SAFETENSORS_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME | |
| weights_name = _add_variant(weights_name, variant) | |
| weight_name_split = weights_name.split(".") | |
| if len(weight_name_split) in [2, 3]: | |
| weights_name_pattern = weight_name_split[0] + "{suffix}." + ".".join(weight_name_split[1:]) | |
| else: | |
| raise ValueError(f"Invalid {weights_name} provided.") | |
| os.makedirs(save_directory, exist_ok=True) | |
| if push_to_hub: | |
| commit_message = kwargs.pop("commit_message", None) | |
| private = kwargs.pop("private", False) | |
| create_pr = kwargs.pop("create_pr", False) | |
| token = kwargs.pop("token", None) | |
| repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1]) | |
| repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id | |
| # Only save the model itself if we are using distributed training | |
| model_to_save = self | |
| # Attach architecture to the config | |
| # Save the config | |
| if is_main_process: | |
| model_to_save.save_config(save_directory) | |
| # Save the model | |
| state_dict = model_to_save.state_dict() | |
| # Save the model | |
| state_dict_split = split_torch_state_dict_into_shards( | |
| state_dict, max_shard_size=max_shard_size, filename_pattern=weights_name_pattern | |
| ) | |
| # Clean the folder from a previous save | |
| if is_main_process: | |
| for filename in os.listdir(save_directory): | |
| if filename in state_dict_split.filename_to_tensors.keys(): | |
| continue | |
| full_filename = os.path.join(save_directory, filename) | |
| if not os.path.isfile(full_filename): | |
| continue | |
| weights_without_ext = weights_name_pattern.replace(".bin", "").replace(".safetensors", "") | |
| weights_without_ext = weights_without_ext.replace("{suffix}", "") | |
| filename_without_ext = filename.replace(".bin", "").replace(".safetensors", "") | |
| # make sure that file to be deleted matches format of sharded file, e.g. pytorch_model-00001-of-00005 | |
| if ( | |
| filename.startswith(weights_without_ext) | |
| and _REGEX_SHARD.fullmatch(filename_without_ext) is not None | |
| ): | |
| os.remove(full_filename) | |
| for filename, tensors in state_dict_split.filename_to_tensors.items(): | |
| shard = {tensor: state_dict[tensor] for tensor in tensors} | |
| filepath = os.path.join(save_directory, filename) | |
| if safe_serialization: | |
| # At some point we will need to deal better with save_function (used for TPU and other distributed | |
| # joyfulness), but for now this enough. | |
| safetensors.torch.save_file(shard, filepath, metadata={"format": "pt"}) | |
| else: | |
| torch.save(shard, filepath) | |
| if state_dict_split.is_sharded: | |
| index = { | |
| "metadata": state_dict_split.metadata, | |
| "weight_map": state_dict_split.tensor_to_filename, | |
| } | |
| save_index_file = SAFE_WEIGHTS_INDEX_NAME if safe_serialization else WEIGHTS_INDEX_NAME | |
| save_index_file = os.path.join(save_directory, _add_variant(save_index_file, variant)) | |
| # Save the index as well | |
| with open(save_index_file, "w", encoding="utf-8") as f: | |
| content = json.dumps(index, indent=2, sort_keys=True) + "\n" | |
| f.write(content) | |
| logger.info( | |
| f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be " | |
| f"split in {len(state_dict_split.filename_to_tensors)} checkpoint shards. You can find where each parameters has been saved in the " | |
| f"index located at {save_index_file}." | |
| ) | |
| else: | |
| path_to_weights = os.path.join(save_directory, weights_name) | |
| logger.info(f"Model weights saved in {path_to_weights}") | |
| if push_to_hub: | |
| # Create a new empty model card and eventually tag it | |
| model_card = load_or_create_model_card(repo_id, token=token) | |
| model_card = populate_model_card(model_card) | |
| model_card.save(Path(save_directory, "README.md").as_posix()) | |
| self._upload_folder( | |
| save_directory, | |
| repo_id, | |
| token=token, | |
| commit_message=commit_message, | |
| create_pr=create_pr, | |
| ) | |
| def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs): | |
| r""" | |
| Instantiate a pretrained PyTorch model from a pretrained model configuration. | |
| The model is set in evaluation mode - `model.eval()` - by default, and dropout modules are deactivated. To | |
| train the model, set it back in training mode with `model.train()`. | |
| Parameters: | |
| pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*): | |
| Can be either: | |
| - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on | |
| the Hub. | |
| - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved | |
| with [`~ModelMixin.save_pretrained`]. | |
| cache_dir (`Union[str, os.PathLike]`, *optional*): | |
| Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | |
| is not used. | |
| torch_dtype (`str` or `torch.dtype`, *optional*): | |
| Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the | |
| dtype is automatically derived from the model's weights. | |
| force_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
| cached versions if they exist. | |
| proxies (`Dict[str, str]`, *optional*): | |
| A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | |
| 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
| output_loading_info (`bool`, *optional*, defaults to `False`): | |
| Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages. | |
| local_files_only(`bool`, *optional*, defaults to `False`): | |
| Whether to only load local model weights and configuration files or not. If set to `True`, the model | |
| won't be downloaded from the Hub. | |
| token (`str` or *bool*, *optional*): | |
| The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | |
| `diffusers-cli login` (stored in `~/.huggingface`) is used. | |
| revision (`str`, *optional*, defaults to `"main"`): | |
| The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | |
| allowed by Git. | |
| from_flax (`bool`, *optional*, defaults to `False`): | |
| Load the model weights from a Flax checkpoint save file. | |
| subfolder (`str`, *optional*, defaults to `""`): | |
| The subfolder location of a model file within a larger model repository on the Hub or locally. | |
| mirror (`str`, *optional*): | |
| Mirror source to resolve accessibility issues if you're downloading a model in China. We do not | |
| guarantee the timeliness or safety of the source, and you should refer to the mirror site for more | |
| information. | |
| device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*): | |
| A map that specifies where each submodule should go. It doesn't need to be defined for each | |
| parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the | |
| same device. Defaults to `None`, meaning that the model will be loaded on CPU. | |
| Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For | |
| more information about each option see [designing a device | |
| map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map). | |
| max_memory (`Dict`, *optional*): | |
| A dictionary device identifier for the maximum memory. Will default to the maximum memory available for | |
| each GPU and the available CPU RAM if unset. | |
| offload_folder (`str` or `os.PathLike`, *optional*): | |
| The path to offload weights if `device_map` contains the value `"disk"`. | |
| offload_state_dict (`bool`, *optional*): | |
| If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if | |
| the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True` | |
| when there is some disk offload. | |
| low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`): | |
| Speed up model loading only loading the pretrained weights and not initializing the weights. This also | |
| tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model. | |
| Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this | |
| argument to `True` will raise an error. | |
| variant (`str`, *optional*): | |
| Load weights from a specified `variant` filename such as `"fp16"` or `"ema"`. This is ignored when | |
| loading `from_flax`. | |
| use_safetensors (`bool`, *optional*, defaults to `None`): | |
| If set to `None`, the `safetensors` weights are downloaded if they're available **and** if the | |
| `safetensors` library is installed. If set to `True`, the model is forcibly loaded from `safetensors` | |
| weights. If set to `False`, `safetensors` weights are not loaded. | |
| <Tip> | |
| To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with | |
| `huggingface-cli login`. You can also activate the special | |
| ["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use this method in a | |
| firewalled environment. | |
| </Tip> | |
| Example: | |
| ```py | |
| from diffusers import UNet2DConditionModel | |
| unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet") | |
| ``` | |
| If you get the error message below, you need to finetune the weights for your downstream task: | |
| ```bash | |
| Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match: | |
| - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated | |
| You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference. | |
| ``` | |
| """ | |
| cache_dir = kwargs.pop("cache_dir", None) | |
| ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False) | |
| force_download = kwargs.pop("force_download", False) | |
| from_flax = kwargs.pop("from_flax", False) | |
| proxies = kwargs.pop("proxies", None) | |
| output_loading_info = kwargs.pop("output_loading_info", False) | |
| local_files_only = kwargs.pop("local_files_only", None) | |
| token = kwargs.pop("token", None) | |
| revision = kwargs.pop("revision", None) | |
| torch_dtype = kwargs.pop("torch_dtype", None) | |
| subfolder = kwargs.pop("subfolder", None) | |
| device_map = kwargs.pop("device_map", None) | |
| max_memory = kwargs.pop("max_memory", None) | |
| offload_folder = kwargs.pop("offload_folder", None) | |
| offload_state_dict = kwargs.pop("offload_state_dict", False) | |
| low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT) | |
| variant = kwargs.pop("variant", None) | |
| use_safetensors = kwargs.pop("use_safetensors", None) | |
| allow_pickle = False | |
| if use_safetensors is None: | |
| use_safetensors = True | |
| allow_pickle = True | |
| if low_cpu_mem_usage and not is_accelerate_available(): | |
| low_cpu_mem_usage = False | |
| logger.warning( | |
| "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the" | |
| " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install" | |
| " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip" | |
| " install accelerate\n```\n." | |
| ) | |
| if device_map is not None and not is_accelerate_available(): | |
| raise NotImplementedError( | |
| "Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set" | |
| " `device_map=None`. You can install accelerate with `pip install accelerate`." | |
| ) | |
| # Check if we can handle device_map and dispatching the weights | |
| if device_map is not None and not is_torch_version(">=", "1.9.0"): | |
| raise NotImplementedError( | |
| "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set" | |
| " `device_map=None`." | |
| ) | |
| if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"): | |
| raise NotImplementedError( | |
| "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set" | |
| " `low_cpu_mem_usage=False`." | |
| ) | |
| if low_cpu_mem_usage is False and device_map is not None: | |
| raise ValueError( | |
| f"You cannot set `low_cpu_mem_usage` to `False` while using device_map={device_map} for loading and" | |
| " dispatching. Please make sure to set `low_cpu_mem_usage=True`." | |
| ) | |
| # change device_map into a map if we passed an int, a str or a torch.device | |
| if isinstance(device_map, torch.device): | |
| device_map = {"": device_map} | |
| elif isinstance(device_map, str) and device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: | |
| try: | |
| device_map = {"": torch.device(device_map)} | |
| except RuntimeError: | |
| raise ValueError( | |
| "When passing device_map as a string, the value needs to be a device name (e.g. cpu, cuda:0) or " | |
| f"'auto', 'balanced', 'balanced_low_0', 'sequential' but found {device_map}." | |
| ) | |
| elif isinstance(device_map, int): | |
| if device_map < 0: | |
| raise ValueError( | |
| "You can't pass device_map as a negative int. If you want to put the model on the cpu, pass device_map = 'cpu' " | |
| ) | |
| else: | |
| device_map = {"": device_map} | |
| if device_map is not None: | |
| if low_cpu_mem_usage is None: | |
| low_cpu_mem_usage = True | |
| elif not low_cpu_mem_usage: | |
| raise ValueError("Passing along a `device_map` requires `low_cpu_mem_usage=True`") | |
| if low_cpu_mem_usage: | |
| if device_map is not None and not is_torch_version(">=", "1.10"): | |
| # The max memory utils require PyTorch >= 1.10 to have torch.cuda.mem_get_info. | |
| raise ValueError("`low_cpu_mem_usage` and `device_map` require PyTorch >= 1.10.") | |
| # Load config if we don't provide a configuration | |
| config_path = pretrained_model_name_or_path | |
| user_agent = { | |
| "diffusers": __version__, | |
| "file_type": "model", | |
| "framework": "pytorch", | |
| } | |
| # load config | |
| config, unused_kwargs, commit_hash = cls.load_config( | |
| config_path, | |
| cache_dir=cache_dir, | |
| return_unused_kwargs=True, | |
| return_commit_hash=True, | |
| force_download=force_download, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| token=token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| **kwargs, | |
| ) | |
| # Determine if we're loading from a directory of sharded checkpoints. | |
| is_sharded = False | |
| index_file = None | |
| is_local = os.path.isdir(pretrained_model_name_or_path) | |
| index_file = _fetch_index_file( | |
| is_local=is_local, | |
| pretrained_model_name_or_path=pretrained_model_name_or_path, | |
| subfolder=subfolder or "", | |
| use_safetensors=use_safetensors, | |
| cache_dir=cache_dir, | |
| variant=variant, | |
| force_download=force_download, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| token=token, | |
| revision=revision, | |
| user_agent=user_agent, | |
| commit_hash=commit_hash, | |
| ) | |
| if index_file is not None and index_file.is_file(): | |
| is_sharded = True | |
| if is_sharded and from_flax: | |
| raise ValueError("Loading of sharded checkpoints is not supported when `from_flax=True`.") | |
| # load model | |
| model_file = None | |
| if from_flax: | |
| model_file = _get_model_file( | |
| pretrained_model_name_or_path, | |
| weights_name=FLAX_WEIGHTS_NAME, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| token=token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| commit_hash=commit_hash, | |
| ) | |
| model = cls.from_config(config, **unused_kwargs) | |
| # Convert the weights | |
| from .modeling_pytorch_flax_utils import load_flax_checkpoint_in_pytorch_model | |
| model = load_flax_checkpoint_in_pytorch_model(model, model_file) | |
| else: | |
| if is_sharded: | |
| sharded_ckpt_cached_folder, sharded_metadata = _get_checkpoint_shard_files( | |
| pretrained_model_name_or_path, | |
| index_file, | |
| cache_dir=cache_dir, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| token=token, | |
| user_agent=user_agent, | |
| revision=revision, | |
| subfolder=subfolder or "", | |
| ) | |
| elif use_safetensors and not is_sharded: | |
| try: | |
| model_file = _get_model_file( | |
| pretrained_model_name_or_path, | |
| weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant), | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| token=token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| commit_hash=commit_hash, | |
| ) | |
| except IOError as e: | |
| logger.error(f"An error occurred while trying to fetch {pretrained_model_name_or_path}: {e}") | |
| if not allow_pickle: | |
| raise | |
| logger.warning( | |
| "Defaulting to unsafe serialization. Pass `allow_pickle=False` to raise an error instead." | |
| ) | |
| if model_file is None and not is_sharded: | |
| model_file = _get_model_file( | |
| pretrained_model_name_or_path, | |
| weights_name=_add_variant(WEIGHTS_NAME, variant), | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| token=token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| commit_hash=commit_hash, | |
| ) | |
| if low_cpu_mem_usage: | |
| # Instantiate model with empty weights | |
| with accelerate.init_empty_weights(): | |
| model = cls.from_config(config, **unused_kwargs) | |
| # if device_map is None, load the state dict and move the params from meta device to the cpu | |
| if device_map is None and not is_sharded: | |
| param_device = "cpu" | |
| state_dict = load_state_dict(model_file, variant=variant) | |
| model._convert_deprecated_attention_blocks(state_dict) | |
| # move the params from meta device to cpu | |
| missing_keys = set(model.state_dict().keys()) - set(state_dict.keys()) | |
| if len(missing_keys) > 0: | |
| raise ValueError( | |
| f"Cannot load {cls} from {pretrained_model_name_or_path} because the following keys are" | |
| f" missing: \n {', '.join(missing_keys)}. \n Please make sure to pass" | |
| " `low_cpu_mem_usage=False` and `device_map=None` if you want to randomly initialize" | |
| " those weights or else make sure your checkpoint file is correct." | |
| ) | |
| unexpected_keys = load_model_dict_into_meta( | |
| model, | |
| state_dict, | |
| device=param_device, | |
| dtype=torch_dtype, | |
| model_name_or_path=pretrained_model_name_or_path, | |
| ) | |
| if cls._keys_to_ignore_on_load_unexpected is not None: | |
| for pat in cls._keys_to_ignore_on_load_unexpected: | |
| unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] | |
| if len(unexpected_keys) > 0: | |
| logger.warning( | |
| f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}" | |
| ) | |
| else: # else let accelerate handle loading and dispatching. | |
| # Load weights and dispatch according to the device_map | |
| # by default the device_map is None and the weights are loaded on the CPU | |
| force_hook = True | |
| device_map = _determine_device_map(model, device_map, max_memory, torch_dtype) | |
| if device_map is None and is_sharded: | |
| # we load the parameters on the cpu | |
| device_map = {"": "cpu"} | |
| force_hook = False | |
| try: | |
| accelerate.load_checkpoint_and_dispatch( | |
| model, | |
| model_file if not is_sharded else index_file, | |
| device_map, | |
| max_memory=max_memory, | |
| offload_folder=offload_folder, | |
| offload_state_dict=offload_state_dict, | |
| dtype=torch_dtype, | |
| force_hooks=force_hook, | |
| strict=True, | |
| ) | |
| except AttributeError as e: | |
| # When using accelerate loading, we do not have the ability to load the state | |
| # dict and rename the weight names manually. Additionally, accelerate skips | |
| # torch loading conventions and directly writes into `module.{_buffers, _parameters}` | |
| # (which look like they should be private variables?), so we can't use the standard hooks | |
| # to rename parameters on load. We need to mimic the original weight names so the correct | |
| # attributes are available. After we have loaded the weights, we convert the deprecated | |
| # names to the new non-deprecated names. Then we _greatly encourage_ the user to convert | |
| # the weights so we don't have to do this again. | |
| if "'Attention' object has no attribute" in str(e): | |
| logger.warning( | |
| f"Taking `{str(e)}` while using `accelerate.load_checkpoint_and_dispatch` to mean {pretrained_model_name_or_path}" | |
| " was saved with deprecated attention block weight names. We will load it with the deprecated attention block" | |
| " names and convert them on the fly to the new attention block format. Please re-save the model after this conversion," | |
| " so we don't have to do the on the fly renaming in the future. If the model is from a hub checkpoint," | |
| " please also re-upload it or open a PR on the original repository." | |
| ) | |
| model._temp_convert_self_to_deprecated_attention_blocks() | |
| accelerate.load_checkpoint_and_dispatch( | |
| model, | |
| model_file if not is_sharded else index_file, | |
| device_map, | |
| max_memory=max_memory, | |
| offload_folder=offload_folder, | |
| offload_state_dict=offload_state_dict, | |
| dtype=torch_dtype, | |
| force_hooks=force_hook, | |
| strict=True, | |
| ) | |
| model._undo_temp_convert_self_to_deprecated_attention_blocks() | |
| else: | |
| raise e | |
| loading_info = { | |
| "missing_keys": [], | |
| "unexpected_keys": [], | |
| "mismatched_keys": [], | |
| "error_msgs": [], | |
| } | |
| else: | |
| model = cls.from_config(config, **unused_kwargs) | |
| state_dict = load_state_dict(model_file, variant=variant) | |
| model._convert_deprecated_attention_blocks(state_dict) | |
| model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model( | |
| model, | |
| state_dict, | |
| model_file, | |
| pretrained_model_name_or_path, | |
| ignore_mismatched_sizes=ignore_mismatched_sizes, | |
| ) | |
| loading_info = { | |
| "missing_keys": missing_keys, | |
| "unexpected_keys": unexpected_keys, | |
| "mismatched_keys": mismatched_keys, | |
| "error_msgs": error_msgs, | |
| } | |
| if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype): | |
| raise ValueError( | |
| f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}." | |
| ) | |
| elif torch_dtype is not None: | |
| model = model.to(torch_dtype) | |
| model.register_to_config(_name_or_path=pretrained_model_name_or_path) | |
| # Set model in evaluation mode to deactivate DropOut modules by default | |
| model.eval() | |
| if output_loading_info: | |
| return model, loading_info | |
| return model | |
| def _load_pretrained_model( | |
| cls, | |
| model, | |
| state_dict: OrderedDict, | |
| resolved_archive_file, | |
| pretrained_model_name_or_path: Union[str, os.PathLike], | |
| ignore_mismatched_sizes: bool = False, | |
| ): | |
| # Retrieve missing & unexpected_keys | |
| model_state_dict = model.state_dict() | |
| loaded_keys = list(state_dict.keys()) | |
| expected_keys = list(model_state_dict.keys()) | |
| original_loaded_keys = loaded_keys | |
| missing_keys = list(set(expected_keys) - set(loaded_keys)) | |
| unexpected_keys = list(set(loaded_keys) - set(expected_keys)) | |
| # Make sure we are able to load base models as well as derived models (with heads) | |
| model_to_load = model | |
| def _find_mismatched_keys( | |
| state_dict, | |
| model_state_dict, | |
| loaded_keys, | |
| ignore_mismatched_sizes, | |
| ): | |
| mismatched_keys = [] | |
| if ignore_mismatched_sizes: | |
| for checkpoint_key in loaded_keys: | |
| model_key = checkpoint_key | |
| if ( | |
| model_key in model_state_dict | |
| and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape | |
| ): | |
| mismatched_keys.append( | |
| (checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape) | |
| ) | |
| del state_dict[checkpoint_key] | |
| return mismatched_keys | |
| if state_dict is not None: | |
| # Whole checkpoint | |
| mismatched_keys = _find_mismatched_keys( | |
| state_dict, | |
| model_state_dict, | |
| original_loaded_keys, | |
| ignore_mismatched_sizes, | |
| ) | |
| error_msgs = _load_state_dict_into_model(model_to_load, state_dict) | |
| if len(error_msgs) > 0: | |
| error_msg = "\n\t".join(error_msgs) | |
| if "size mismatch" in error_msg: | |
| error_msg += ( | |
| "\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method." | |
| ) | |
| raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}") | |
| if len(unexpected_keys) > 0: | |
| logger.warning( | |
| f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when" | |
| f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are" | |
| f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task" | |
| " or with another architecture (e.g. initializing a BertForSequenceClassification model from a" | |
| " BertForPreTraining model).\n- This IS NOT expected if you are initializing" | |
| f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly" | |
| " identical (initializing a BertForSequenceClassification model from a" | |
| " BertForSequenceClassification model)." | |
| ) | |
| else: | |
| logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n") | |
| if len(missing_keys) > 0: | |
| logger.warning( | |
| f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at" | |
| f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably" | |
| " TRAIN this model on a down-stream task to be able to use it for predictions and inference." | |
| ) | |
| elif len(mismatched_keys) == 0: | |
| logger.info( | |
| f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at" | |
| f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the" | |
| f" checkpoint was trained on, you can already use {model.__class__.__name__} for predictions" | |
| " without further training." | |
| ) | |
| if len(mismatched_keys) > 0: | |
| mismatched_warning = "\n".join( | |
| [ | |
| f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated" | |
| for key, shape1, shape2 in mismatched_keys | |
| ] | |
| ) | |
| logger.warning( | |
| f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at" | |
| f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not" | |
| f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be" | |
| " able to use it for predictions and inference." | |
| ) | |
| return model, missing_keys, unexpected_keys, mismatched_keys, error_msgs | |
| def _get_signature_keys(cls, obj): | |
| parameters = inspect.signature(obj.__init__).parameters | |
| required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty} | |
| optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty}) | |
| expected_modules = set(required_parameters.keys()) - {"self"} | |
| return expected_modules, optional_parameters | |
| # Adapted from `transformers` modeling_utils.py | |
| def _get_no_split_modules(self, device_map: str): | |
| """ | |
| Get the modules of the model that should not be spit when using device_map. We iterate through the modules to | |
| get the underlying `_no_split_modules`. | |
| Args: | |
| device_map (`str`): | |
| The device map value. Options are ["auto", "balanced", "balanced_low_0", "sequential"] | |
| Returns: | |
| `List[str]`: List of modules that should not be split | |
| """ | |
| _no_split_modules = set() | |
| modules_to_check = [self] | |
| while len(modules_to_check) > 0: | |
| module = modules_to_check.pop(-1) | |
| # if the module does not appear in _no_split_modules, we also check the children | |
| if module.__class__.__name__ not in _no_split_modules: | |
| if isinstance(module, ModelMixin): | |
| if module._no_split_modules is None: | |
| raise ValueError( | |
| f"{module.__class__.__name__} does not support `device_map='{device_map}'`. To implement support, the model " | |
| "class needs to implement the `_no_split_modules` attribute." | |
| ) | |
| else: | |
| _no_split_modules = _no_split_modules | set(module._no_split_modules) | |
| modules_to_check += list(module.children()) | |
| return list(_no_split_modules) | |
| def device(self) -> torch.device: | |
| """ | |
| `torch.device`: The device on which the module is (assuming that all the module parameters are on the same | |
| device). | |
| """ | |
| return get_parameter_device(self) | |
| def dtype(self) -> torch.dtype: | |
| """ | |
| `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype). | |
| """ | |
| return get_parameter_dtype(self) | |
| def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int: | |
| """ | |
| Get number of (trainable or non-embedding) parameters in the module. | |
| Args: | |
| only_trainable (`bool`, *optional*, defaults to `False`): | |
| Whether or not to return only the number of trainable parameters. | |
| exclude_embeddings (`bool`, *optional*, defaults to `False`): | |
| Whether or not to return only the number of non-embedding parameters. | |
| Returns: | |
| `int`: The number of parameters. | |
| Example: | |
| ```py | |
| from diffusers import UNet2DConditionModel | |
| model_id = "runwayml/stable-diffusion-v1-5" | |
| unet = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet") | |
| unet.num_parameters(only_trainable=True) | |
| 859520964 | |
| ``` | |
| """ | |
| if exclude_embeddings: | |
| embedding_param_names = [ | |
| f"{name}.weight" | |
| for name, module_type in self.named_modules() | |
| if isinstance(module_type, torch.nn.Embedding) | |
| ] | |
| non_embedding_parameters = [ | |
| parameter for name, parameter in self.named_parameters() if name not in embedding_param_names | |
| ] | |
| return sum(p.numel() for p in non_embedding_parameters if p.requires_grad or not only_trainable) | |
| else: | |
| return sum(p.numel() for p in self.parameters() if p.requires_grad or not only_trainable) | |
| def _convert_deprecated_attention_blocks(self, state_dict: OrderedDict) -> None: | |
| deprecated_attention_block_paths = [] | |
| def recursive_find_attn_block(name, module): | |
| if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block: | |
| deprecated_attention_block_paths.append(name) | |
| for sub_name, sub_module in module.named_children(): | |
| sub_name = sub_name if name == "" else f"{name}.{sub_name}" | |
| recursive_find_attn_block(sub_name, sub_module) | |
| recursive_find_attn_block("", self) | |
| # NOTE: we have to check if the deprecated parameters are in the state dict | |
| # because it is possible we are loading from a state dict that was already | |
| # converted | |
| for path in deprecated_attention_block_paths: | |
| # group_norm path stays the same | |
| # query -> to_q | |
| if f"{path}.query.weight" in state_dict: | |
| state_dict[f"{path}.to_q.weight"] = state_dict.pop(f"{path}.query.weight") | |
| if f"{path}.query.bias" in state_dict: | |
| state_dict[f"{path}.to_q.bias"] = state_dict.pop(f"{path}.query.bias") | |
| # key -> to_k | |
| if f"{path}.key.weight" in state_dict: | |
| state_dict[f"{path}.to_k.weight"] = state_dict.pop(f"{path}.key.weight") | |
| if f"{path}.key.bias" in state_dict: | |
| state_dict[f"{path}.to_k.bias"] = state_dict.pop(f"{path}.key.bias") | |
| # value -> to_v | |
| if f"{path}.value.weight" in state_dict: | |
| state_dict[f"{path}.to_v.weight"] = state_dict.pop(f"{path}.value.weight") | |
| if f"{path}.value.bias" in state_dict: | |
| state_dict[f"{path}.to_v.bias"] = state_dict.pop(f"{path}.value.bias") | |
| # proj_attn -> to_out.0 | |
| if f"{path}.proj_attn.weight" in state_dict: | |
| state_dict[f"{path}.to_out.0.weight"] = state_dict.pop(f"{path}.proj_attn.weight") | |
| if f"{path}.proj_attn.bias" in state_dict: | |
| state_dict[f"{path}.to_out.0.bias"] = state_dict.pop(f"{path}.proj_attn.bias") | |
| def _temp_convert_self_to_deprecated_attention_blocks(self) -> None: | |
| deprecated_attention_block_modules = [] | |
| def recursive_find_attn_block(module): | |
| if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block: | |
| deprecated_attention_block_modules.append(module) | |
| for sub_module in module.children(): | |
| recursive_find_attn_block(sub_module) | |
| recursive_find_attn_block(self) | |
| for module in deprecated_attention_block_modules: | |
| module.query = module.to_q | |
| module.key = module.to_k | |
| module.value = module.to_v | |
| module.proj_attn = module.to_out[0] | |
| # We don't _have_ to delete the old attributes, but it's helpful to ensure | |
| # that _all_ the weights are loaded into the new attributes and we're not | |
| # making an incorrect assumption that this model should be converted when | |
| # it really shouldn't be. | |
| del module.to_q | |
| del module.to_k | |
| del module.to_v | |
| del module.to_out | |
| def _undo_temp_convert_self_to_deprecated_attention_blocks(self) -> None: | |
| deprecated_attention_block_modules = [] | |
| def recursive_find_attn_block(module) -> None: | |
| if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block: | |
| deprecated_attention_block_modules.append(module) | |
| for sub_module in module.children(): | |
| recursive_find_attn_block(sub_module) | |
| recursive_find_attn_block(self) | |
| for module in deprecated_attention_block_modules: | |
| module.to_q = module.query | |
| module.to_k = module.key | |
| module.to_v = module.value | |
| module.to_out = nn.ModuleList([module.proj_attn, nn.Dropout(module.dropout)]) | |
| del module.query | |
| del module.key | |
| del module.value | |
| del module.proj_attn | |
| class LegacyModelMixin(ModelMixin): | |
| r""" | |
| A subclass of `ModelMixin` to resolve class mapping from legacy classes (like `Transformer2DModel`) to more | |
| pipeline-specific classes (like `DiTTransformer2DModel`). | |
| """ | |
| def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs): | |
| # To prevent dependency import problem. | |
| from .model_loading_utils import _fetch_remapped_cls_from_config | |
| # Create a copy of the kwargs so that we don't mess with the keyword arguments in the downstream calls. | |
| kwargs_copy = kwargs.copy() | |
| cache_dir = kwargs.pop("cache_dir", None) | |
| force_download = kwargs.pop("force_download", False) | |
| proxies = kwargs.pop("proxies", None) | |
| local_files_only = kwargs.pop("local_files_only", None) | |
| token = kwargs.pop("token", None) | |
| revision = kwargs.pop("revision", None) | |
| subfolder = kwargs.pop("subfolder", None) | |
| # Load config if we don't provide a configuration | |
| config_path = pretrained_model_name_or_path | |
| user_agent = { | |
| "diffusers": __version__, | |
| "file_type": "model", | |
| "framework": "pytorch", | |
| } | |
| # load config | |
| config, _, _ = cls.load_config( | |
| config_path, | |
| cache_dir=cache_dir, | |
| return_unused_kwargs=True, | |
| return_commit_hash=True, | |
| force_download=force_download, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| token=token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| **kwargs, | |
| ) | |
| # resolve remapping | |
| remapped_class = _fetch_remapped_cls_from_config(config, cls) | |
| return remapped_class.from_pretrained(pretrained_model_name_or_path, **kwargs_copy) | |