Spaces:
Running
on
Zero
Running
on
Zero
| from dataclasses import dataclass | |
| from ..utils import BaseOutput | |
| class AutoencoderKLOutput(BaseOutput): | |
| """ | |
| Output of AutoencoderKL encoding method. | |
| Args: | |
| latent_dist (`DiagonalGaussianDistribution`): | |
| Encoded outputs of `Encoder` represented as the mean and logvar of `DiagonalGaussianDistribution`. | |
| `DiagonalGaussianDistribution` allows for sampling latents from the distribution. | |
| """ | |
| latent_dist: "DiagonalGaussianDistribution" # noqa: F821 | |
| class Transformer2DModelOutput(BaseOutput): | |
| """ | |
| The output of [`Transformer2DModel`]. | |
| Args: | |
| sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete): | |
| The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability | |
| distributions for the unnoised latent pixels. | |
| """ | |
| sample: "torch.Tensor" # noqa: F821 | |