Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from dataclasses import dataclass | |
| from typing import Any, Dict, List, Optional, Tuple, Union | |
| import torch | |
| from torch import nn | |
| from torch.nn import functional as F | |
| from ..configuration_utils import ConfigMixin, register_to_config | |
| from ..loaders import FromOriginalModelMixin | |
| from ..utils import BaseOutput, logging | |
| from .attention_processor import ( | |
| ADDED_KV_ATTENTION_PROCESSORS, | |
| CROSS_ATTENTION_PROCESSORS, | |
| AttentionProcessor, | |
| AttnAddedKVProcessor, | |
| AttnProcessor, | |
| ) | |
| from .embeddings import TimestepEmbedding, Timesteps | |
| from .modeling_utils import ModelMixin | |
| from .unets.unet_2d_blocks import UNetMidBlock2DCrossAttn | |
| from .unets.unet_2d_condition import UNet2DConditionModel | |
| from .unets.unet_motion_model import CrossAttnDownBlockMotion, DownBlockMotion | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class SparseControlNetOutput(BaseOutput): | |
| """ | |
| The output of [`SparseControlNetModel`]. | |
| Args: | |
| down_block_res_samples (`tuple[torch.Tensor]`): | |
| A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should | |
| be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be | |
| used to condition the original UNet's downsampling activations. | |
| mid_down_block_re_sample (`torch.Tensor`): | |
| The activation of the middle block (the lowest sample resolution). Each tensor should be of shape | |
| `(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`. | |
| Output can be used to condition the original UNet's middle block activation. | |
| """ | |
| down_block_res_samples: Tuple[torch.Tensor] | |
| mid_block_res_sample: torch.Tensor | |
| class SparseControlNetConditioningEmbedding(nn.Module): | |
| def __init__( | |
| self, | |
| conditioning_embedding_channels: int, | |
| conditioning_channels: int = 3, | |
| block_out_channels: Tuple[int, ...] = (16, 32, 96, 256), | |
| ): | |
| super().__init__() | |
| self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1) | |
| self.blocks = nn.ModuleList([]) | |
| for i in range(len(block_out_channels) - 1): | |
| channel_in = block_out_channels[i] | |
| channel_out = block_out_channels[i + 1] | |
| self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1)) | |
| self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2)) | |
| self.conv_out = zero_module( | |
| nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1) | |
| ) | |
| def forward(self, conditioning: torch.Tensor) -> torch.Tensor: | |
| embedding = self.conv_in(conditioning) | |
| embedding = F.silu(embedding) | |
| for block in self.blocks: | |
| embedding = block(embedding) | |
| embedding = F.silu(embedding) | |
| embedding = self.conv_out(embedding) | |
| return embedding | |
| class SparseControlNetModel(ModelMixin, ConfigMixin, FromOriginalModelMixin): | |
| """ | |
| A SparseControlNet model as described in [SparseCtrl: Adding Sparse Controls to Text-to-Video Diffusion | |
| Models](https://arxiv.org/abs/2311.16933). | |
| Args: | |
| in_channels (`int`, defaults to 4): | |
| The number of channels in the input sample. | |
| conditioning_channels (`int`, defaults to 4): | |
| The number of input channels in the controlnet conditional embedding module. If | |
| `concat_condition_embedding` is True, the value provided here is incremented by 1. | |
| flip_sin_to_cos (`bool`, defaults to `True`): | |
| Whether to flip the sin to cos in the time embedding. | |
| freq_shift (`int`, defaults to 0): | |
| The frequency shift to apply to the time embedding. | |
| down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): | |
| The tuple of downsample blocks to use. | |
| only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`): | |
| block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`): | |
| The tuple of output channels for each block. | |
| layers_per_block (`int`, defaults to 2): | |
| The number of layers per block. | |
| downsample_padding (`int`, defaults to 1): | |
| The padding to use for the downsampling convolution. | |
| mid_block_scale_factor (`float`, defaults to 1): | |
| The scale factor to use for the mid block. | |
| act_fn (`str`, defaults to "silu"): | |
| The activation function to use. | |
| norm_num_groups (`int`, *optional*, defaults to 32): | |
| The number of groups to use for the normalization. If None, normalization and activation layers is skipped | |
| in post-processing. | |
| norm_eps (`float`, defaults to 1e-5): | |
| The epsilon to use for the normalization. | |
| cross_attention_dim (`int`, defaults to 1280): | |
| The dimension of the cross attention features. | |
| transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1): | |
| The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for | |
| [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`], | |
| [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`]. | |
| transformer_layers_per_mid_block (`int` or `Tuple[int]`, *optional*, defaults to 1): | |
| The number of transformer layers to use in each layer in the middle block. | |
| attention_head_dim (`int` or `Tuple[int]`, defaults to 8): | |
| The dimension of the attention heads. | |
| num_attention_heads (`int` or `Tuple[int]`, *optional*): | |
| The number of heads to use for multi-head attention. | |
| use_linear_projection (`bool`, defaults to `False`): | |
| upcast_attention (`bool`, defaults to `False`): | |
| resnet_time_scale_shift (`str`, defaults to `"default"`): | |
| Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`. | |
| conditioning_embedding_out_channels (`Tuple[int]`, defaults to `(16, 32, 96, 256)`): | |
| The tuple of output channel for each block in the `conditioning_embedding` layer. | |
| global_pool_conditions (`bool`, defaults to `False`): | |
| TODO(Patrick) - unused parameter | |
| controlnet_conditioning_channel_order (`str`, defaults to `rgb`): | |
| motion_max_seq_length (`int`, defaults to `32`): | |
| The maximum sequence length to use in the motion module. | |
| motion_num_attention_heads (`int` or `Tuple[int]`, defaults to `8`): | |
| The number of heads to use in each attention layer of the motion module. | |
| concat_conditioning_mask (`bool`, defaults to `True`): | |
| use_simplified_condition_embedding (`bool`, defaults to `True`): | |
| """ | |
| _supports_gradient_checkpointing = True | |
| def __init__( | |
| self, | |
| in_channels: int = 4, | |
| conditioning_channels: int = 4, | |
| flip_sin_to_cos: bool = True, | |
| freq_shift: int = 0, | |
| down_block_types: Tuple[str, ...] = ( | |
| "CrossAttnDownBlockMotion", | |
| "CrossAttnDownBlockMotion", | |
| "CrossAttnDownBlockMotion", | |
| "DownBlockMotion", | |
| ), | |
| only_cross_attention: Union[bool, Tuple[bool]] = False, | |
| block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280), | |
| layers_per_block: int = 2, | |
| downsample_padding: int = 1, | |
| mid_block_scale_factor: float = 1, | |
| act_fn: str = "silu", | |
| norm_num_groups: Optional[int] = 32, | |
| norm_eps: float = 1e-5, | |
| cross_attention_dim: int = 768, | |
| transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1, | |
| transformer_layers_per_mid_block: Optional[Union[int, Tuple[int]]] = None, | |
| temporal_transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1, | |
| attention_head_dim: Union[int, Tuple[int, ...]] = 8, | |
| num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None, | |
| use_linear_projection: bool = False, | |
| upcast_attention: bool = False, | |
| resnet_time_scale_shift: str = "default", | |
| conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256), | |
| global_pool_conditions: bool = False, | |
| controlnet_conditioning_channel_order: str = "rgb", | |
| motion_max_seq_length: int = 32, | |
| motion_num_attention_heads: int = 8, | |
| concat_conditioning_mask: bool = True, | |
| use_simplified_condition_embedding: bool = True, | |
| ): | |
| super().__init__() | |
| self.use_simplified_condition_embedding = use_simplified_condition_embedding | |
| # If `num_attention_heads` is not defined (which is the case for most models) | |
| # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. | |
| # The reason for this behavior is to correct for incorrectly named variables that were introduced | |
| # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 | |
| # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking | |
| # which is why we correct for the naming here. | |
| num_attention_heads = num_attention_heads or attention_head_dim | |
| # Check inputs | |
| if len(block_out_channels) != len(down_block_types): | |
| raise ValueError( | |
| f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." | |
| ) | |
| if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types): | |
| raise ValueError( | |
| f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}." | |
| ) | |
| if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): | |
| raise ValueError( | |
| f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." | |
| ) | |
| if isinstance(transformer_layers_per_block, int): | |
| transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) | |
| if isinstance(temporal_transformer_layers_per_block, int): | |
| temporal_transformer_layers_per_block = [temporal_transformer_layers_per_block] * len(down_block_types) | |
| # input | |
| conv_in_kernel = 3 | |
| conv_in_padding = (conv_in_kernel - 1) // 2 | |
| self.conv_in = nn.Conv2d( | |
| in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding | |
| ) | |
| if concat_conditioning_mask: | |
| conditioning_channels = conditioning_channels + 1 | |
| self.concat_conditioning_mask = concat_conditioning_mask | |
| # control net conditioning embedding | |
| if use_simplified_condition_embedding: | |
| self.controlnet_cond_embedding = zero_module( | |
| nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1) | |
| ) | |
| else: | |
| self.controlnet_cond_embedding = SparseControlNetConditioningEmbedding( | |
| conditioning_embedding_channels=block_out_channels[0], | |
| block_out_channels=conditioning_embedding_out_channels, | |
| conditioning_channels=conditioning_channels, | |
| ) | |
| # time | |
| time_embed_dim = block_out_channels[0] * 4 | |
| self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) | |
| timestep_input_dim = block_out_channels[0] | |
| self.time_embedding = TimestepEmbedding( | |
| timestep_input_dim, | |
| time_embed_dim, | |
| act_fn=act_fn, | |
| ) | |
| self.down_blocks = nn.ModuleList([]) | |
| self.controlnet_down_blocks = nn.ModuleList([]) | |
| if isinstance(cross_attention_dim, int): | |
| cross_attention_dim = (cross_attention_dim,) * len(down_block_types) | |
| if isinstance(only_cross_attention, bool): | |
| only_cross_attention = [only_cross_attention] * len(down_block_types) | |
| if isinstance(attention_head_dim, int): | |
| attention_head_dim = (attention_head_dim,) * len(down_block_types) | |
| if isinstance(num_attention_heads, int): | |
| num_attention_heads = (num_attention_heads,) * len(down_block_types) | |
| if isinstance(motion_num_attention_heads, int): | |
| motion_num_attention_heads = (motion_num_attention_heads,) * len(down_block_types) | |
| # down | |
| output_channel = block_out_channels[0] | |
| controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) | |
| controlnet_block = zero_module(controlnet_block) | |
| self.controlnet_down_blocks.append(controlnet_block) | |
| for i, down_block_type in enumerate(down_block_types): | |
| input_channel = output_channel | |
| output_channel = block_out_channels[i] | |
| is_final_block = i == len(block_out_channels) - 1 | |
| if down_block_type == "CrossAttnDownBlockMotion": | |
| down_block = CrossAttnDownBlockMotion( | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| temb_channels=time_embed_dim, | |
| dropout=0, | |
| num_layers=layers_per_block, | |
| transformer_layers_per_block=transformer_layers_per_block[i], | |
| resnet_eps=norm_eps, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| resnet_act_fn=act_fn, | |
| resnet_groups=norm_num_groups, | |
| resnet_pre_norm=True, | |
| num_attention_heads=num_attention_heads[i], | |
| cross_attention_dim=cross_attention_dim[i], | |
| add_downsample=not is_final_block, | |
| dual_cross_attention=False, | |
| use_linear_projection=use_linear_projection, | |
| only_cross_attention=only_cross_attention[i], | |
| upcast_attention=upcast_attention, | |
| temporal_num_attention_heads=motion_num_attention_heads[i], | |
| temporal_max_seq_length=motion_max_seq_length, | |
| temporal_transformer_layers_per_block=temporal_transformer_layers_per_block[i], | |
| temporal_double_self_attention=False, | |
| ) | |
| elif down_block_type == "DownBlockMotion": | |
| down_block = DownBlockMotion( | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| temb_channels=time_embed_dim, | |
| dropout=0, | |
| num_layers=layers_per_block, | |
| resnet_eps=norm_eps, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| resnet_act_fn=act_fn, | |
| resnet_groups=norm_num_groups, | |
| resnet_pre_norm=True, | |
| add_downsample=not is_final_block, | |
| temporal_num_attention_heads=motion_num_attention_heads[i], | |
| temporal_max_seq_length=motion_max_seq_length, | |
| temporal_transformer_layers_per_block=temporal_transformer_layers_per_block[i], | |
| temporal_double_self_attention=False, | |
| ) | |
| else: | |
| raise ValueError( | |
| "Invalid `block_type` encountered. Must be one of `CrossAttnDownBlockMotion` or `DownBlockMotion`" | |
| ) | |
| self.down_blocks.append(down_block) | |
| for _ in range(layers_per_block): | |
| controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) | |
| controlnet_block = zero_module(controlnet_block) | |
| self.controlnet_down_blocks.append(controlnet_block) | |
| if not is_final_block: | |
| controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) | |
| controlnet_block = zero_module(controlnet_block) | |
| self.controlnet_down_blocks.append(controlnet_block) | |
| # mid | |
| mid_block_channels = block_out_channels[-1] | |
| controlnet_block = nn.Conv2d(mid_block_channels, mid_block_channels, kernel_size=1) | |
| controlnet_block = zero_module(controlnet_block) | |
| self.controlnet_mid_block = controlnet_block | |
| if transformer_layers_per_mid_block is None: | |
| transformer_layers_per_mid_block = ( | |
| transformer_layers_per_block[-1] if isinstance(transformer_layers_per_block[-1], int) else 1 | |
| ) | |
| self.mid_block = UNetMidBlock2DCrossAttn( | |
| in_channels=mid_block_channels, | |
| temb_channels=time_embed_dim, | |
| dropout=0, | |
| num_layers=1, | |
| transformer_layers_per_block=transformer_layers_per_mid_block, | |
| resnet_eps=norm_eps, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| resnet_act_fn=act_fn, | |
| resnet_groups=norm_num_groups, | |
| resnet_pre_norm=True, | |
| num_attention_heads=num_attention_heads[-1], | |
| output_scale_factor=mid_block_scale_factor, | |
| cross_attention_dim=cross_attention_dim[-1], | |
| dual_cross_attention=False, | |
| use_linear_projection=use_linear_projection, | |
| upcast_attention=upcast_attention, | |
| attention_type="default", | |
| ) | |
| def from_unet( | |
| cls, | |
| unet: UNet2DConditionModel, | |
| controlnet_conditioning_channel_order: str = "rgb", | |
| conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256), | |
| load_weights_from_unet: bool = True, | |
| conditioning_channels: int = 3, | |
| ) -> "SparseControlNetModel": | |
| r""" | |
| Instantiate a [`SparseControlNetModel`] from [`UNet2DConditionModel`]. | |
| Parameters: | |
| unet (`UNet2DConditionModel`): | |
| The UNet model weights to copy to the [`SparseControlNetModel`]. All configuration options are also | |
| copied where applicable. | |
| """ | |
| transformer_layers_per_block = ( | |
| unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1 | |
| ) | |
| down_block_types = unet.config.down_block_types | |
| for i in range(len(down_block_types)): | |
| if "CrossAttn" in down_block_types[i]: | |
| down_block_types[i] = "CrossAttnDownBlockMotion" | |
| elif "Down" in down_block_types[i]: | |
| down_block_types[i] = "DownBlockMotion" | |
| else: | |
| raise ValueError("Invalid `block_type` encountered. Must be a cross-attention or down block") | |
| controlnet = cls( | |
| in_channels=unet.config.in_channels, | |
| conditioning_channels=conditioning_channels, | |
| flip_sin_to_cos=unet.config.flip_sin_to_cos, | |
| freq_shift=unet.config.freq_shift, | |
| down_block_types=unet.config.down_block_types, | |
| only_cross_attention=unet.config.only_cross_attention, | |
| block_out_channels=unet.config.block_out_channels, | |
| layers_per_block=unet.config.layers_per_block, | |
| downsample_padding=unet.config.downsample_padding, | |
| mid_block_scale_factor=unet.config.mid_block_scale_factor, | |
| act_fn=unet.config.act_fn, | |
| norm_num_groups=unet.config.norm_num_groups, | |
| norm_eps=unet.config.norm_eps, | |
| cross_attention_dim=unet.config.cross_attention_dim, | |
| transformer_layers_per_block=transformer_layers_per_block, | |
| attention_head_dim=unet.config.attention_head_dim, | |
| num_attention_heads=unet.config.num_attention_heads, | |
| use_linear_projection=unet.config.use_linear_projection, | |
| upcast_attention=unet.config.upcast_attention, | |
| resnet_time_scale_shift=unet.config.resnet_time_scale_shift, | |
| conditioning_embedding_out_channels=conditioning_embedding_out_channels, | |
| controlnet_conditioning_channel_order=controlnet_conditioning_channel_order, | |
| ) | |
| if load_weights_from_unet: | |
| controlnet.conv_in.load_state_dict(unet.conv_in.state_dict(), strict=False) | |
| controlnet.time_proj.load_state_dict(unet.time_proj.state_dict(), strict=False) | |
| controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict(), strict=False) | |
| controlnet.down_blocks.load_state_dict(unet.down_blocks.state_dict(), strict=False) | |
| controlnet.mid_block.load_state_dict(unet.mid_block.state_dict(), strict=False) | |
| return controlnet | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors | |
| def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
| r""" | |
| Returns: | |
| `dict` of attention processors: A dictionary containing all attention processors used in the model with | |
| indexed by its weight name. | |
| """ | |
| # set recursively | |
| processors = {} | |
| def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
| if hasattr(module, "get_processor"): | |
| processors[f"{name}.processor"] = module.get_processor() | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
| return processors | |
| for name, module in self.named_children(): | |
| fn_recursive_add_processors(name, module, processors) | |
| return processors | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
| def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
| r""" | |
| Sets the attention processor to use to compute attention. | |
| Parameters: | |
| processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
| The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
| for **all** `Attention` layers. | |
| If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
| processor. This is strongly recommended when setting trainable attention processors. | |
| """ | |
| count = len(self.attn_processors.keys()) | |
| if isinstance(processor, dict) and len(processor) != count: | |
| raise ValueError( | |
| f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
| f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
| ) | |
| def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
| if hasattr(module, "set_processor"): | |
| if not isinstance(processor, dict): | |
| module.set_processor(processor) | |
| else: | |
| module.set_processor(processor.pop(f"{name}.processor")) | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
| for name, module in self.named_children(): | |
| fn_recursive_attn_processor(name, module, processor) | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor | |
| def set_default_attn_processor(self): | |
| """ | |
| Disables custom attention processors and sets the default attention implementation. | |
| """ | |
| if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): | |
| processor = AttnAddedKVProcessor() | |
| elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): | |
| processor = AttnProcessor() | |
| else: | |
| raise ValueError( | |
| f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" | |
| ) | |
| self.set_attn_processor(processor) | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attention_slice | |
| def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None: | |
| r""" | |
| Enable sliced attention computation. | |
| When this option is enabled, the attention module splits the input tensor in slices to compute attention in | |
| several steps. This is useful for saving some memory in exchange for a small decrease in speed. | |
| Args: | |
| slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): | |
| When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If | |
| `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is | |
| provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` | |
| must be a multiple of `slice_size`. | |
| """ | |
| sliceable_head_dims = [] | |
| def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): | |
| if hasattr(module, "set_attention_slice"): | |
| sliceable_head_dims.append(module.sliceable_head_dim) | |
| for child in module.children(): | |
| fn_recursive_retrieve_sliceable_dims(child) | |
| # retrieve number of attention layers | |
| for module in self.children(): | |
| fn_recursive_retrieve_sliceable_dims(module) | |
| num_sliceable_layers = len(sliceable_head_dims) | |
| if slice_size == "auto": | |
| # half the attention head size is usually a good trade-off between | |
| # speed and memory | |
| slice_size = [dim // 2 for dim in sliceable_head_dims] | |
| elif slice_size == "max": | |
| # make smallest slice possible | |
| slice_size = num_sliceable_layers * [1] | |
| slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size | |
| if len(slice_size) != len(sliceable_head_dims): | |
| raise ValueError( | |
| f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" | |
| f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." | |
| ) | |
| for i in range(len(slice_size)): | |
| size = slice_size[i] | |
| dim = sliceable_head_dims[i] | |
| if size is not None and size > dim: | |
| raise ValueError(f"size {size} has to be smaller or equal to {dim}.") | |
| # Recursively walk through all the children. | |
| # Any children which exposes the set_attention_slice method | |
| # gets the message | |
| def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): | |
| if hasattr(module, "set_attention_slice"): | |
| module.set_attention_slice(slice_size.pop()) | |
| for child in module.children(): | |
| fn_recursive_set_attention_slice(child, slice_size) | |
| reversed_slice_size = list(reversed(slice_size)) | |
| for module in self.children(): | |
| fn_recursive_set_attention_slice(module, reversed_slice_size) | |
| def _set_gradient_checkpointing(self, module, value: bool = False) -> None: | |
| if isinstance(module, (CrossAttnDownBlockMotion, DownBlockMotion, UNetMidBlock2DCrossAttn)): | |
| module.gradient_checkpointing = value | |
| def forward( | |
| self, | |
| sample: torch.Tensor, | |
| timestep: Union[torch.Tensor, float, int], | |
| encoder_hidden_states: torch.Tensor, | |
| controlnet_cond: torch.Tensor, | |
| conditioning_scale: float = 1.0, | |
| timestep_cond: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| conditioning_mask: Optional[torch.Tensor] = None, | |
| guess_mode: bool = False, | |
| return_dict: bool = True, | |
| ) -> Union[SparseControlNetOutput, Tuple[Tuple[torch.Tensor, ...], torch.Tensor]]: | |
| """ | |
| The [`SparseControlNetModel`] forward method. | |
| Args: | |
| sample (`torch.Tensor`): | |
| The noisy input tensor. | |
| timestep (`Union[torch.Tensor, float, int]`): | |
| The number of timesteps to denoise an input. | |
| encoder_hidden_states (`torch.Tensor`): | |
| The encoder hidden states. | |
| controlnet_cond (`torch.Tensor`): | |
| The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`. | |
| conditioning_scale (`float`, defaults to `1.0`): | |
| The scale factor for ControlNet outputs. | |
| class_labels (`torch.Tensor`, *optional*, defaults to `None`): | |
| Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings. | |
| timestep_cond (`torch.Tensor`, *optional*, defaults to `None`): | |
| Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the | |
| timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep | |
| embeddings. | |
| attention_mask (`torch.Tensor`, *optional*, defaults to `None`): | |
| An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask | |
| is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large | |
| negative values to the attention scores corresponding to "discard" tokens. | |
| added_cond_kwargs (`dict`): | |
| Additional conditions for the Stable Diffusion XL UNet. | |
| cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`): | |
| A kwargs dictionary that if specified is passed along to the `AttnProcessor`. | |
| guess_mode (`bool`, defaults to `False`): | |
| In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if | |
| you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended. | |
| return_dict (`bool`, defaults to `True`): | |
| Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple. | |
| Returns: | |
| [`~models.controlnet.ControlNetOutput`] **or** `tuple`: | |
| If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned, otherwise a tuple is | |
| returned where the first element is the sample tensor. | |
| """ | |
| sample_batch_size, sample_channels, sample_num_frames, sample_height, sample_width = sample.shape | |
| sample = torch.zeros_like(sample) | |
| # check channel order | |
| channel_order = self.config.controlnet_conditioning_channel_order | |
| if channel_order == "rgb": | |
| # in rgb order by default | |
| ... | |
| elif channel_order == "bgr": | |
| controlnet_cond = torch.flip(controlnet_cond, dims=[1]) | |
| else: | |
| raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}") | |
| # prepare attention_mask | |
| if attention_mask is not None: | |
| attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 | |
| attention_mask = attention_mask.unsqueeze(1) | |
| # 1. time | |
| timesteps = timestep | |
| if not torch.is_tensor(timesteps): | |
| # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
| # This would be a good case for the `match` statement (Python 3.10+) | |
| is_mps = sample.device.type == "mps" | |
| if isinstance(timestep, float): | |
| dtype = torch.float32 if is_mps else torch.float64 | |
| else: | |
| dtype = torch.int32 if is_mps else torch.int64 | |
| timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) | |
| elif len(timesteps.shape) == 0: | |
| timesteps = timesteps[None].to(sample.device) | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timesteps = timesteps.expand(sample.shape[0]) | |
| t_emb = self.time_proj(timesteps) | |
| # timesteps does not contain any weights and will always return f32 tensors | |
| # but time_embedding might actually be running in fp16. so we need to cast here. | |
| # there might be better ways to encapsulate this. | |
| t_emb = t_emb.to(dtype=sample.dtype) | |
| emb = self.time_embedding(t_emb, timestep_cond) | |
| emb = emb.repeat_interleave(sample_num_frames, dim=0) | |
| encoder_hidden_states = encoder_hidden_states.repeat_interleave(sample_num_frames, dim=0) | |
| # 2. pre-process | |
| batch_size, channels, num_frames, height, width = sample.shape | |
| sample = sample.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width) | |
| sample = self.conv_in(sample) | |
| batch_frames, channels, height, width = sample.shape | |
| sample = sample[:, None].reshape(sample_batch_size, sample_num_frames, channels, height, width) | |
| if self.concat_conditioning_mask: | |
| controlnet_cond = torch.cat([controlnet_cond, conditioning_mask], dim=1) | |
| batch_size, channels, num_frames, height, width = controlnet_cond.shape | |
| controlnet_cond = controlnet_cond.permute(0, 2, 1, 3, 4).reshape( | |
| batch_size * num_frames, channels, height, width | |
| ) | |
| controlnet_cond = self.controlnet_cond_embedding(controlnet_cond) | |
| batch_frames, channels, height, width = controlnet_cond.shape | |
| controlnet_cond = controlnet_cond[:, None].reshape(batch_size, num_frames, channels, height, width) | |
| sample = sample + controlnet_cond | |
| batch_size, num_frames, channels, height, width = sample.shape | |
| sample = sample.reshape(sample_batch_size * sample_num_frames, channels, height, width) | |
| # 3. down | |
| down_block_res_samples = (sample,) | |
| for downsample_block in self.down_blocks: | |
| if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: | |
| sample, res_samples = downsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=attention_mask, | |
| num_frames=num_frames, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| ) | |
| else: | |
| sample, res_samples = downsample_block(hidden_states=sample, temb=emb, num_frames=num_frames) | |
| down_block_res_samples += res_samples | |
| # 4. mid | |
| if self.mid_block is not None: | |
| if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention: | |
| sample = self.mid_block( | |
| sample, | |
| emb, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=attention_mask, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| ) | |
| else: | |
| sample = self.mid_block(sample, emb) | |
| # 5. Control net blocks | |
| controlnet_down_block_res_samples = () | |
| for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks): | |
| down_block_res_sample = controlnet_block(down_block_res_sample) | |
| controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,) | |
| down_block_res_samples = controlnet_down_block_res_samples | |
| mid_block_res_sample = self.controlnet_mid_block(sample) | |
| # 6. scaling | |
| if guess_mode and not self.config.global_pool_conditions: | |
| scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device) # 0.1 to 1.0 | |
| scales = scales * conditioning_scale | |
| down_block_res_samples = [sample * scale for sample, scale in zip(down_block_res_samples, scales)] | |
| mid_block_res_sample = mid_block_res_sample * scales[-1] # last one | |
| else: | |
| down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples] | |
| mid_block_res_sample = mid_block_res_sample * conditioning_scale | |
| if self.config.global_pool_conditions: | |
| down_block_res_samples = [ | |
| torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples | |
| ] | |
| mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True) | |
| if not return_dict: | |
| return (down_block_res_samples, mid_block_res_sample) | |
| return SparseControlNetOutput( | |
| down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample | |
| ) | |
| # Copied from diffusers.models.controlnet.zero_module | |
| def zero_module(module: nn.Module) -> nn.Module: | |
| for p in module.parameters(): | |
| nn.init.zeros_(p) | |
| return module | |