Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024 HunyuanDiT Authors, Qixun Wang and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from dataclasses import dataclass | |
| from typing import Dict, Optional, Union | |
| import torch | |
| from torch import nn | |
| from ..configuration_utils import ConfigMixin, register_to_config | |
| from ..utils import logging | |
| from .attention_processor import AttentionProcessor | |
| from .controlnet import BaseOutput, Tuple, zero_module | |
| from .embeddings import ( | |
| HunyuanCombinedTimestepTextSizeStyleEmbedding, | |
| PatchEmbed, | |
| PixArtAlphaTextProjection, | |
| ) | |
| from .modeling_utils import ModelMixin | |
| from .transformers.hunyuan_transformer_2d import HunyuanDiTBlock | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class HunyuanControlNetOutput(BaseOutput): | |
| controlnet_block_samples: Tuple[torch.Tensor] | |
| class HunyuanDiT2DControlNetModel(ModelMixin, ConfigMixin): | |
| def __init__( | |
| self, | |
| conditioning_channels: int = 3, | |
| num_attention_heads: int = 16, | |
| attention_head_dim: int = 88, | |
| in_channels: Optional[int] = None, | |
| patch_size: Optional[int] = None, | |
| activation_fn: str = "gelu-approximate", | |
| sample_size=32, | |
| hidden_size=1152, | |
| transformer_num_layers: int = 40, | |
| mlp_ratio: float = 4.0, | |
| cross_attention_dim: int = 1024, | |
| cross_attention_dim_t5: int = 2048, | |
| pooled_projection_dim: int = 1024, | |
| text_len: int = 77, | |
| text_len_t5: int = 256, | |
| use_style_cond_and_image_meta_size: bool = True, | |
| ): | |
| super().__init__() | |
| self.num_heads = num_attention_heads | |
| self.inner_dim = num_attention_heads * attention_head_dim | |
| self.text_embedder = PixArtAlphaTextProjection( | |
| in_features=cross_attention_dim_t5, | |
| hidden_size=cross_attention_dim_t5 * 4, | |
| out_features=cross_attention_dim, | |
| act_fn="silu_fp32", | |
| ) | |
| self.text_embedding_padding = nn.Parameter( | |
| torch.randn(text_len + text_len_t5, cross_attention_dim, dtype=torch.float32) | |
| ) | |
| self.pos_embed = PatchEmbed( | |
| height=sample_size, | |
| width=sample_size, | |
| in_channels=in_channels, | |
| embed_dim=hidden_size, | |
| patch_size=patch_size, | |
| pos_embed_type=None, | |
| ) | |
| self.time_extra_emb = HunyuanCombinedTimestepTextSizeStyleEmbedding( | |
| hidden_size, | |
| pooled_projection_dim=pooled_projection_dim, | |
| seq_len=text_len_t5, | |
| cross_attention_dim=cross_attention_dim_t5, | |
| use_style_cond_and_image_meta_size=use_style_cond_and_image_meta_size, | |
| ) | |
| # controlnet_blocks | |
| self.controlnet_blocks = nn.ModuleList([]) | |
| # HunyuanDiT Blocks | |
| self.blocks = nn.ModuleList( | |
| [ | |
| HunyuanDiTBlock( | |
| dim=self.inner_dim, | |
| num_attention_heads=self.config.num_attention_heads, | |
| activation_fn=activation_fn, | |
| ff_inner_dim=int(self.inner_dim * mlp_ratio), | |
| cross_attention_dim=cross_attention_dim, | |
| qk_norm=True, # See http://arxiv.org/abs/2302.05442 for details. | |
| skip=False, # always False as it is the first half of the model | |
| ) | |
| for layer in range(transformer_num_layers // 2 - 1) | |
| ] | |
| ) | |
| self.input_block = zero_module(nn.Linear(hidden_size, hidden_size)) | |
| for _ in range(len(self.blocks)): | |
| controlnet_block = nn.Linear(hidden_size, hidden_size) | |
| controlnet_block = zero_module(controlnet_block) | |
| self.controlnet_blocks.append(controlnet_block) | |
| def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
| r""" | |
| Returns: | |
| `dict` of attention processors: A dictionary containing all attention processors used in the model with | |
| indexed by its weight name. | |
| """ | |
| # set recursively | |
| processors = {} | |
| def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
| if hasattr(module, "get_processor"): | |
| processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
| return processors | |
| for name, module in self.named_children(): | |
| fn_recursive_add_processors(name, module, processors) | |
| return processors | |
| def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
| r""" | |
| Sets the attention processor to use to compute attention. | |
| Parameters: | |
| processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
| The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
| for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the | |
| corresponding cross attention processor. This is strongly recommended when setting trainable attention | |
| processors. | |
| """ | |
| count = len(self.attn_processors.keys()) | |
| if isinstance(processor, dict) and len(processor) != count: | |
| raise ValueError( | |
| f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
| f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
| ) | |
| def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
| if hasattr(module, "set_processor"): | |
| if not isinstance(processor, dict): | |
| module.set_processor(processor) | |
| else: | |
| module.set_processor(processor.pop(f"{name}.processor")) | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
| for name, module in self.named_children(): | |
| fn_recursive_attn_processor(name, module, processor) | |
| def from_transformer( | |
| cls, transformer, conditioning_channels=3, transformer_num_layers=None, load_weights_from_transformer=True | |
| ): | |
| config = transformer.config | |
| activation_fn = config.activation_fn | |
| attention_head_dim = config.attention_head_dim | |
| cross_attention_dim = config.cross_attention_dim | |
| cross_attention_dim_t5 = config.cross_attention_dim_t5 | |
| hidden_size = config.hidden_size | |
| in_channels = config.in_channels | |
| mlp_ratio = config.mlp_ratio | |
| num_attention_heads = config.num_attention_heads | |
| patch_size = config.patch_size | |
| sample_size = config.sample_size | |
| text_len = config.text_len | |
| text_len_t5 = config.text_len_t5 | |
| conditioning_channels = conditioning_channels | |
| transformer_num_layers = transformer_num_layers or config.transformer_num_layers | |
| controlnet = cls( | |
| conditioning_channels=conditioning_channels, | |
| transformer_num_layers=transformer_num_layers, | |
| activation_fn=activation_fn, | |
| attention_head_dim=attention_head_dim, | |
| cross_attention_dim=cross_attention_dim, | |
| cross_attention_dim_t5=cross_attention_dim_t5, | |
| hidden_size=hidden_size, | |
| in_channels=in_channels, | |
| mlp_ratio=mlp_ratio, | |
| num_attention_heads=num_attention_heads, | |
| patch_size=patch_size, | |
| sample_size=sample_size, | |
| text_len=text_len, | |
| text_len_t5=text_len_t5, | |
| ) | |
| if load_weights_from_transformer: | |
| key = controlnet.load_state_dict(transformer.state_dict(), strict=False) | |
| logger.warning(f"controlnet load from Hunyuan-DiT. missing_keys: {key[0]}") | |
| return controlnet | |
| def forward( | |
| self, | |
| hidden_states, | |
| timestep, | |
| controlnet_cond: torch.Tensor, | |
| conditioning_scale: float = 1.0, | |
| encoder_hidden_states=None, | |
| text_embedding_mask=None, | |
| encoder_hidden_states_t5=None, | |
| text_embedding_mask_t5=None, | |
| image_meta_size=None, | |
| style=None, | |
| image_rotary_emb=None, | |
| return_dict=True, | |
| ): | |
| """ | |
| The [`HunyuanDiT2DControlNetModel`] forward method. | |
| Args: | |
| hidden_states (`torch.Tensor` of shape `(batch size, dim, height, width)`): | |
| The input tensor. | |
| timestep ( `torch.LongTensor`, *optional*): | |
| Used to indicate denoising step. | |
| controlnet_cond ( `torch.Tensor` ): | |
| The conditioning input to ControlNet. | |
| conditioning_scale ( `float` ): | |
| Indicate the conditioning scale. | |
| encoder_hidden_states ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*): | |
| Conditional embeddings for cross attention layer. This is the output of `BertModel`. | |
| text_embedding_mask: torch.Tensor | |
| An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output | |
| of `BertModel`. | |
| encoder_hidden_states_t5 ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*): | |
| Conditional embeddings for cross attention layer. This is the output of T5 Text Encoder. | |
| text_embedding_mask_t5: torch.Tensor | |
| An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output | |
| of T5 Text Encoder. | |
| image_meta_size (torch.Tensor): | |
| Conditional embedding indicate the image sizes | |
| style: torch.Tensor: | |
| Conditional embedding indicate the style | |
| image_rotary_emb (`torch.Tensor`): | |
| The image rotary embeddings to apply on query and key tensors during attention calculation. | |
| return_dict: bool | |
| Whether to return a dictionary. | |
| """ | |
| height, width = hidden_states.shape[-2:] | |
| hidden_states = self.pos_embed(hidden_states) # b,c,H,W -> b, N, C | |
| # 2. pre-process | |
| hidden_states = hidden_states + self.input_block(self.pos_embed(controlnet_cond)) | |
| temb = self.time_extra_emb( | |
| timestep, encoder_hidden_states_t5, image_meta_size, style, hidden_dtype=timestep.dtype | |
| ) # [B, D] | |
| # text projection | |
| batch_size, sequence_length, _ = encoder_hidden_states_t5.shape | |
| encoder_hidden_states_t5 = self.text_embedder( | |
| encoder_hidden_states_t5.view(-1, encoder_hidden_states_t5.shape[-1]) | |
| ) | |
| encoder_hidden_states_t5 = encoder_hidden_states_t5.view(batch_size, sequence_length, -1) | |
| encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states_t5], dim=1) | |
| text_embedding_mask = torch.cat([text_embedding_mask, text_embedding_mask_t5], dim=-1) | |
| text_embedding_mask = text_embedding_mask.unsqueeze(2).bool() | |
| encoder_hidden_states = torch.where(text_embedding_mask, encoder_hidden_states, self.text_embedding_padding) | |
| block_res_samples = () | |
| for layer, block in enumerate(self.blocks): | |
| hidden_states = block( | |
| hidden_states, | |
| temb=temb, | |
| encoder_hidden_states=encoder_hidden_states, | |
| image_rotary_emb=image_rotary_emb, | |
| ) # (N, L, D) | |
| block_res_samples = block_res_samples + (hidden_states,) | |
| controlnet_block_res_samples = () | |
| for block_res_sample, controlnet_block in zip(block_res_samples, self.controlnet_blocks): | |
| block_res_sample = controlnet_block(block_res_sample) | |
| controlnet_block_res_samples = controlnet_block_res_samples + (block_res_sample,) | |
| # 6. scaling | |
| controlnet_block_res_samples = [sample * conditioning_scale for sample in controlnet_block_res_samples] | |
| if not return_dict: | |
| return (controlnet_block_res_samples,) | |
| return HunyuanControlNetOutput(controlnet_block_samples=controlnet_block_res_samples) | |
| class HunyuanDiT2DMultiControlNetModel(ModelMixin): | |
| r""" | |
| `HunyuanDiT2DMultiControlNetModel` wrapper class for Multi-HunyuanDiT2DControlNetModel | |
| This module is a wrapper for multiple instances of the `HunyuanDiT2DControlNetModel`. The `forward()` API is | |
| designed to be compatible with `HunyuanDiT2DControlNetModel`. | |
| Args: | |
| controlnets (`List[HunyuanDiT2DControlNetModel]`): | |
| Provides additional conditioning to the unet during the denoising process. You must set multiple | |
| `HunyuanDiT2DControlNetModel` as a list. | |
| """ | |
| def __init__(self, controlnets): | |
| super().__init__() | |
| self.nets = nn.ModuleList(controlnets) | |
| def forward( | |
| self, | |
| hidden_states, | |
| timestep, | |
| controlnet_cond: torch.Tensor, | |
| conditioning_scale: float = 1.0, | |
| encoder_hidden_states=None, | |
| text_embedding_mask=None, | |
| encoder_hidden_states_t5=None, | |
| text_embedding_mask_t5=None, | |
| image_meta_size=None, | |
| style=None, | |
| image_rotary_emb=None, | |
| return_dict=True, | |
| ): | |
| """ | |
| The [`HunyuanDiT2DControlNetModel`] forward method. | |
| Args: | |
| hidden_states (`torch.Tensor` of shape `(batch size, dim, height, width)`): | |
| The input tensor. | |
| timestep ( `torch.LongTensor`, *optional*): | |
| Used to indicate denoising step. | |
| controlnet_cond ( `torch.Tensor` ): | |
| The conditioning input to ControlNet. | |
| conditioning_scale ( `float` ): | |
| Indicate the conditioning scale. | |
| encoder_hidden_states ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*): | |
| Conditional embeddings for cross attention layer. This is the output of `BertModel`. | |
| text_embedding_mask: torch.Tensor | |
| An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output | |
| of `BertModel`. | |
| encoder_hidden_states_t5 ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*): | |
| Conditional embeddings for cross attention layer. This is the output of T5 Text Encoder. | |
| text_embedding_mask_t5: torch.Tensor | |
| An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output | |
| of T5 Text Encoder. | |
| image_meta_size (torch.Tensor): | |
| Conditional embedding indicate the image sizes | |
| style: torch.Tensor: | |
| Conditional embedding indicate the style | |
| image_rotary_emb (`torch.Tensor`): | |
| The image rotary embeddings to apply on query and key tensors during attention calculation. | |
| return_dict: bool | |
| Whether to return a dictionary. | |
| """ | |
| for i, (image, scale, controlnet) in enumerate(zip(controlnet_cond, conditioning_scale, self.nets)): | |
| block_samples = controlnet( | |
| hidden_states=hidden_states, | |
| timestep=timestep, | |
| controlnet_cond=image, | |
| conditioning_scale=scale, | |
| encoder_hidden_states=encoder_hidden_states, | |
| text_embedding_mask=text_embedding_mask, | |
| encoder_hidden_states_t5=encoder_hidden_states_t5, | |
| text_embedding_mask_t5=text_embedding_mask_t5, | |
| image_meta_size=image_meta_size, | |
| style=style, | |
| image_rotary_emb=image_rotary_emb, | |
| return_dict=return_dict, | |
| ) | |
| # merge samples | |
| if i == 0: | |
| control_block_samples = block_samples | |
| else: | |
| control_block_samples = [ | |
| control_block_sample + block_sample | |
| for control_block_sample, block_sample in zip(control_block_samples[0], block_samples[0]) | |
| ] | |
| control_block_samples = (control_block_samples,) | |
| return control_block_samples | |