Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	| # Copyright 2024 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import Dict, List, Optional, Union | |
| import safetensors | |
| import torch | |
| from huggingface_hub.utils import validate_hf_hub_args | |
| from torch import nn | |
| from ..models.modeling_utils import load_state_dict | |
| from ..utils import _get_model_file, is_accelerate_available, is_transformers_available, logging | |
| if is_transformers_available(): | |
| from transformers import PreTrainedModel, PreTrainedTokenizer | |
| if is_accelerate_available(): | |
| from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module | |
| logger = logging.get_logger(__name__) | |
| TEXT_INVERSION_NAME = "learned_embeds.bin" | |
| TEXT_INVERSION_NAME_SAFE = "learned_embeds.safetensors" | |
| def load_textual_inversion_state_dicts(pretrained_model_name_or_paths, **kwargs): | |
| cache_dir = kwargs.pop("cache_dir", None) | |
| force_download = kwargs.pop("force_download", False) | |
| proxies = kwargs.pop("proxies", None) | |
| local_files_only = kwargs.pop("local_files_only", None) | |
| token = kwargs.pop("token", None) | |
| revision = kwargs.pop("revision", None) | |
| subfolder = kwargs.pop("subfolder", None) | |
| weight_name = kwargs.pop("weight_name", None) | |
| use_safetensors = kwargs.pop("use_safetensors", None) | |
| allow_pickle = False | |
| if use_safetensors is None: | |
| use_safetensors = True | |
| allow_pickle = True | |
| user_agent = { | |
| "file_type": "text_inversion", | |
| "framework": "pytorch", | |
| } | |
| state_dicts = [] | |
| for pretrained_model_name_or_path in pretrained_model_name_or_paths: | |
| if not isinstance(pretrained_model_name_or_path, (dict, torch.Tensor)): | |
| # 3.1. Load textual inversion file | |
| model_file = None | |
| # Let's first try to load .safetensors weights | |
| if (use_safetensors and weight_name is None) or ( | |
| weight_name is not None and weight_name.endswith(".safetensors") | |
| ): | |
| try: | |
| model_file = _get_model_file( | |
| pretrained_model_name_or_path, | |
| weights_name=weight_name or TEXT_INVERSION_NAME_SAFE, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| token=token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| ) | |
| state_dict = safetensors.torch.load_file(model_file, device="cpu") | |
| except Exception as e: | |
| if not allow_pickle: | |
| raise e | |
| model_file = None | |
| if model_file is None: | |
| model_file = _get_model_file( | |
| pretrained_model_name_or_path, | |
| weights_name=weight_name or TEXT_INVERSION_NAME, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| token=token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| ) | |
| state_dict = load_state_dict(model_file) | |
| else: | |
| state_dict = pretrained_model_name_or_path | |
| state_dicts.append(state_dict) | |
| return state_dicts | |
| class TextualInversionLoaderMixin: | |
| r""" | |
| Load Textual Inversion tokens and embeddings to the tokenizer and text encoder. | |
| """ | |
| def maybe_convert_prompt(self, prompt: Union[str, List[str]], tokenizer: "PreTrainedTokenizer"): # noqa: F821 | |
| r""" | |
| Processes prompts that include a special token corresponding to a multi-vector textual inversion embedding to | |
| be replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual | |
| inversion token or if the textual inversion token is a single vector, the input prompt is returned. | |
| Parameters: | |
| prompt (`str` or list of `str`): | |
| The prompt or prompts to guide the image generation. | |
| tokenizer (`PreTrainedTokenizer`): | |
| The tokenizer responsible for encoding the prompt into input tokens. | |
| Returns: | |
| `str` or list of `str`: The converted prompt | |
| """ | |
| if not isinstance(prompt, List): | |
| prompts = [prompt] | |
| else: | |
| prompts = prompt | |
| prompts = [self._maybe_convert_prompt(p, tokenizer) for p in prompts] | |
| if not isinstance(prompt, List): | |
| return prompts[0] | |
| return prompts | |
| def _maybe_convert_prompt(self, prompt: str, tokenizer: "PreTrainedTokenizer"): # noqa: F821 | |
| r""" | |
| Maybe convert a prompt into a "multi vector"-compatible prompt. If the prompt includes a token that corresponds | |
| to a multi-vector textual inversion embedding, this function will process the prompt so that the special token | |
| is replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual | |
| inversion token or a textual inversion token that is a single vector, the input prompt is simply returned. | |
| Parameters: | |
| prompt (`str`): | |
| The prompt to guide the image generation. | |
| tokenizer (`PreTrainedTokenizer`): | |
| The tokenizer responsible for encoding the prompt into input tokens. | |
| Returns: | |
| `str`: The converted prompt | |
| """ | |
| tokens = tokenizer.tokenize(prompt) | |
| unique_tokens = set(tokens) | |
| for token in unique_tokens: | |
| if token in tokenizer.added_tokens_encoder: | |
| replacement = token | |
| i = 1 | |
| while f"{token}_{i}" in tokenizer.added_tokens_encoder: | |
| replacement += f" {token}_{i}" | |
| i += 1 | |
| prompt = prompt.replace(token, replacement) | |
| return prompt | |
| def _check_text_inv_inputs(self, tokenizer, text_encoder, pretrained_model_name_or_paths, tokens): | |
| if tokenizer is None: | |
| raise ValueError( | |
| f"{self.__class__.__name__} requires `self.tokenizer` or passing a `tokenizer` of type `PreTrainedTokenizer` for calling" | |
| f" `{self.load_textual_inversion.__name__}`" | |
| ) | |
| if text_encoder is None: | |
| raise ValueError( | |
| f"{self.__class__.__name__} requires `self.text_encoder` or passing a `text_encoder` of type `PreTrainedModel` for calling" | |
| f" `{self.load_textual_inversion.__name__}`" | |
| ) | |
| if len(pretrained_model_name_or_paths) > 1 and len(pretrained_model_name_or_paths) != len(tokens): | |
| raise ValueError( | |
| f"You have passed a list of models of length {len(pretrained_model_name_or_paths)}, and list of tokens of length {len(tokens)} " | |
| f"Make sure both lists have the same length." | |
| ) | |
| valid_tokens = [t for t in tokens if t is not None] | |
| if len(set(valid_tokens)) < len(valid_tokens): | |
| raise ValueError(f"You have passed a list of tokens that contains duplicates: {tokens}") | |
| def _retrieve_tokens_and_embeddings(tokens, state_dicts, tokenizer): | |
| all_tokens = [] | |
| all_embeddings = [] | |
| for state_dict, token in zip(state_dicts, tokens): | |
| if isinstance(state_dict, torch.Tensor): | |
| if token is None: | |
| raise ValueError( | |
| "You are trying to load a textual inversion embedding that has been saved as a PyTorch tensor. Make sure to pass the name of the corresponding token in this case: `token=...`." | |
| ) | |
| loaded_token = token | |
| embedding = state_dict | |
| elif len(state_dict) == 1: | |
| # diffusers | |
| loaded_token, embedding = next(iter(state_dict.items())) | |
| elif "string_to_param" in state_dict: | |
| # A1111 | |
| loaded_token = state_dict["name"] | |
| embedding = state_dict["string_to_param"]["*"] | |
| else: | |
| raise ValueError( | |
| f"Loaded state dictionary is incorrect: {state_dict}. \n\n" | |
| "Please verify that the loaded state dictionary of the textual embedding either only has a single key or includes the `string_to_param`" | |
| " input key." | |
| ) | |
| if token is not None and loaded_token != token: | |
| logger.info(f"The loaded token: {loaded_token} is overwritten by the passed token {token}.") | |
| else: | |
| token = loaded_token | |
| if token in tokenizer.get_vocab(): | |
| raise ValueError( | |
| f"Token {token} already in tokenizer vocabulary. Please choose a different token name or remove {token} and embedding from the tokenizer and text encoder." | |
| ) | |
| all_tokens.append(token) | |
| all_embeddings.append(embedding) | |
| return all_tokens, all_embeddings | |
| def _extend_tokens_and_embeddings(tokens, embeddings, tokenizer): | |
| all_tokens = [] | |
| all_embeddings = [] | |
| for embedding, token in zip(embeddings, tokens): | |
| if f"{token}_1" in tokenizer.get_vocab(): | |
| multi_vector_tokens = [token] | |
| i = 1 | |
| while f"{token}_{i}" in tokenizer.added_tokens_encoder: | |
| multi_vector_tokens.append(f"{token}_{i}") | |
| i += 1 | |
| raise ValueError( | |
| f"Multi-vector Token {multi_vector_tokens} already in tokenizer vocabulary. Please choose a different token name or remove the {multi_vector_tokens} and embedding from the tokenizer and text encoder." | |
| ) | |
| is_multi_vector = len(embedding.shape) > 1 and embedding.shape[0] > 1 | |
| if is_multi_vector: | |
| all_tokens += [token] + [f"{token}_{i}" for i in range(1, embedding.shape[0])] | |
| all_embeddings += [e for e in embedding] # noqa: C416 | |
| else: | |
| all_tokens += [token] | |
| all_embeddings += [embedding[0]] if len(embedding.shape) > 1 else [embedding] | |
| return all_tokens, all_embeddings | |
| def load_textual_inversion( | |
| self, | |
| pretrained_model_name_or_path: Union[str, List[str], Dict[str, torch.Tensor], List[Dict[str, torch.Tensor]]], | |
| token: Optional[Union[str, List[str]]] = None, | |
| tokenizer: Optional["PreTrainedTokenizer"] = None, # noqa: F821 | |
| text_encoder: Optional["PreTrainedModel"] = None, # noqa: F821 | |
| **kwargs, | |
| ): | |
| r""" | |
| Load Textual Inversion embeddings into the text encoder of [`StableDiffusionPipeline`] (both 🤗 Diffusers and | |
| Automatic1111 formats are supported). | |
| Parameters: | |
| pretrained_model_name_or_path (`str` or `os.PathLike` or `List[str or os.PathLike]` or `Dict` or `List[Dict]`): | |
| Can be either one of the following or a list of them: | |
| - A string, the *model id* (for example `sd-concepts-library/low-poly-hd-logos-icons`) of a | |
| pretrained model hosted on the Hub. | |
| - A path to a *directory* (for example `./my_text_inversion_directory/`) containing the textual | |
| inversion weights. | |
| - A path to a *file* (for example `./my_text_inversions.pt`) containing textual inversion weights. | |
| - A [torch state | |
| dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). | |
| token (`str` or `List[str]`, *optional*): | |
| Override the token to use for the textual inversion weights. If `pretrained_model_name_or_path` is a | |
| list, then `token` must also be a list of equal length. | |
| text_encoder ([`~transformers.CLIPTextModel`], *optional*): | |
| Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). | |
| If not specified, function will take self.tokenizer. | |
| tokenizer ([`~transformers.CLIPTokenizer`], *optional*): | |
| A `CLIPTokenizer` to tokenize text. If not specified, function will take self.tokenizer. | |
| weight_name (`str`, *optional*): | |
| Name of a custom weight file. This should be used when: | |
| - The saved textual inversion file is in 🤗 Diffusers format, but was saved under a specific weight | |
| name such as `text_inv.bin`. | |
| - The saved textual inversion file is in the Automatic1111 format. | |
| cache_dir (`Union[str, os.PathLike]`, *optional*): | |
| Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | |
| is not used. | |
| force_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
| cached versions if they exist. | |
| proxies (`Dict[str, str]`, *optional*): | |
| A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | |
| 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
| local_files_only (`bool`, *optional*, defaults to `False`): | |
| Whether to only load local model weights and configuration files or not. If set to `True`, the model | |
| won't be downloaded from the Hub. | |
| token (`str` or *bool*, *optional*): | |
| The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | |
| `diffusers-cli login` (stored in `~/.huggingface`) is used. | |
| revision (`str`, *optional*, defaults to `"main"`): | |
| The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | |
| allowed by Git. | |
| subfolder (`str`, *optional*, defaults to `""`): | |
| The subfolder location of a model file within a larger model repository on the Hub or locally. | |
| mirror (`str`, *optional*): | |
| Mirror source to resolve accessibility issues if you're downloading a model in China. We do not | |
| guarantee the timeliness or safety of the source, and you should refer to the mirror site for more | |
| information. | |
| Example: | |
| To load a Textual Inversion embedding vector in 🤗 Diffusers format: | |
| ```py | |
| from diffusers import StableDiffusionPipeline | |
| import torch | |
| model_id = "runwayml/stable-diffusion-v1-5" | |
| pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda") | |
| pipe.load_textual_inversion("sd-concepts-library/cat-toy") | |
| prompt = "A <cat-toy> backpack" | |
| image = pipe(prompt, num_inference_steps=50).images[0] | |
| image.save("cat-backpack.png") | |
| ``` | |
| To load a Textual Inversion embedding vector in Automatic1111 format, make sure to download the vector first | |
| (for example from [civitAI](https://civitai.com/models/3036?modelVersionId=9857)) and then load the vector | |
| locally: | |
| ```py | |
| from diffusers import StableDiffusionPipeline | |
| import torch | |
| model_id = "runwayml/stable-diffusion-v1-5" | |
| pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda") | |
| pipe.load_textual_inversion("./charturnerv2.pt", token="charturnerv2") | |
| prompt = "charturnerv2, multiple views of the same character in the same outfit, a character turnaround of a woman wearing a black jacket and red shirt, best quality, intricate details." | |
| image = pipe(prompt, num_inference_steps=50).images[0] | |
| image.save("character.png") | |
| ``` | |
| """ | |
| # 1. Set correct tokenizer and text encoder | |
| tokenizer = tokenizer or getattr(self, "tokenizer", None) | |
| text_encoder = text_encoder or getattr(self, "text_encoder", None) | |
| # 2. Normalize inputs | |
| pretrained_model_name_or_paths = ( | |
| [pretrained_model_name_or_path] | |
| if not isinstance(pretrained_model_name_or_path, list) | |
| else pretrained_model_name_or_path | |
| ) | |
| tokens = [token] if not isinstance(token, list) else token | |
| if tokens[0] is None: | |
| tokens = tokens * len(pretrained_model_name_or_paths) | |
| # 3. Check inputs | |
| self._check_text_inv_inputs(tokenizer, text_encoder, pretrained_model_name_or_paths, tokens) | |
| # 4. Load state dicts of textual embeddings | |
| state_dicts = load_textual_inversion_state_dicts(pretrained_model_name_or_paths, **kwargs) | |
| # 4.1 Handle the special case when state_dict is a tensor that contains n embeddings for n tokens | |
| if len(tokens) > 1 and len(state_dicts) == 1: | |
| if isinstance(state_dicts[0], torch.Tensor): | |
| state_dicts = list(state_dicts[0]) | |
| if len(tokens) != len(state_dicts): | |
| raise ValueError( | |
| f"You have passed a state_dict contains {len(state_dicts)} embeddings, and list of tokens of length {len(tokens)} " | |
| f"Make sure both have the same length." | |
| ) | |
| # 4. Retrieve tokens and embeddings | |
| tokens, embeddings = self._retrieve_tokens_and_embeddings(tokens, state_dicts, tokenizer) | |
| # 5. Extend tokens and embeddings for multi vector | |
| tokens, embeddings = self._extend_tokens_and_embeddings(tokens, embeddings, tokenizer) | |
| # 6. Make sure all embeddings have the correct size | |
| expected_emb_dim = text_encoder.get_input_embeddings().weight.shape[-1] | |
| if any(expected_emb_dim != emb.shape[-1] for emb in embeddings): | |
| raise ValueError( | |
| "Loaded embeddings are of incorrect shape. Expected each textual inversion embedding " | |
| "to be of shape {input_embeddings.shape[-1]}, but are {embeddings.shape[-1]} " | |
| ) | |
| # 7. Now we can be sure that loading the embedding matrix works | |
| # < Unsafe code: | |
| # 7.1 Offload all hooks in case the pipeline was cpu offloaded before make sure, we offload and onload again | |
| is_model_cpu_offload = False | |
| is_sequential_cpu_offload = False | |
| if self.hf_device_map is None: | |
| for _, component in self.components.items(): | |
| if isinstance(component, nn.Module): | |
| if hasattr(component, "_hf_hook"): | |
| is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload) | |
| is_sequential_cpu_offload = ( | |
| isinstance(getattr(component, "_hf_hook"), AlignDevicesHook) | |
| or hasattr(component._hf_hook, "hooks") | |
| and isinstance(component._hf_hook.hooks[0], AlignDevicesHook) | |
| ) | |
| logger.info( | |
| "Accelerate hooks detected. Since you have called `load_textual_inversion()`, the previous hooks will be first removed. Then the textual inversion parameters will be loaded and the hooks will be applied again." | |
| ) | |
| remove_hook_from_module(component, recurse=is_sequential_cpu_offload) | |
| # 7.2 save expected device and dtype | |
| device = text_encoder.device | |
| dtype = text_encoder.dtype | |
| # 7.3 Increase token embedding matrix | |
| text_encoder.resize_token_embeddings(len(tokenizer) + len(tokens)) | |
| input_embeddings = text_encoder.get_input_embeddings().weight | |
| # 7.4 Load token and embedding | |
| for token, embedding in zip(tokens, embeddings): | |
| # add tokens and get ids | |
| tokenizer.add_tokens(token) | |
| token_id = tokenizer.convert_tokens_to_ids(token) | |
| input_embeddings.data[token_id] = embedding | |
| logger.info(f"Loaded textual inversion embedding for {token}.") | |
| input_embeddings.to(dtype=dtype, device=device) | |
| # 7.5 Offload the model again | |
| if is_model_cpu_offload: | |
| self.enable_model_cpu_offload() | |
| elif is_sequential_cpu_offload: | |
| self.enable_sequential_cpu_offload() | |
| # / Unsafe Code > | |
| def unload_textual_inversion( | |
| self, | |
| tokens: Optional[Union[str, List[str]]] = None, | |
| tokenizer: Optional["PreTrainedTokenizer"] = None, | |
| text_encoder: Optional["PreTrainedModel"] = None, | |
| ): | |
| r""" | |
| Unload Textual Inversion embeddings from the text encoder of [`StableDiffusionPipeline`] | |
| Example: | |
| ```py | |
| from diffusers import AutoPipelineForText2Image | |
| import torch | |
| pipeline = AutoPipelineForText2Image.from_pretrained("runwayml/stable-diffusion-v1-5") | |
| # Example 1 | |
| pipeline.load_textual_inversion("sd-concepts-library/gta5-artwork") | |
| pipeline.load_textual_inversion("sd-concepts-library/moeb-style") | |
| # Remove all token embeddings | |
| pipeline.unload_textual_inversion() | |
| # Example 2 | |
| pipeline.load_textual_inversion("sd-concepts-library/moeb-style") | |
| pipeline.load_textual_inversion("sd-concepts-library/gta5-artwork") | |
| # Remove just one token | |
| pipeline.unload_textual_inversion("<moe-bius>") | |
| # Example 3: unload from SDXL | |
| pipeline = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") | |
| embedding_path = hf_hub_download( | |
| repo_id="linoyts/web_y2k", filename="web_y2k_emb.safetensors", repo_type="model" | |
| ) | |
| # load embeddings to the text encoders | |
| state_dict = load_file(embedding_path) | |
| # load embeddings of text_encoder 1 (CLIP ViT-L/14) | |
| pipeline.load_textual_inversion( | |
| state_dict["clip_l"], | |
| token=["<s0>", "<s1>"], | |
| text_encoder=pipeline.text_encoder, | |
| tokenizer=pipeline.tokenizer, | |
| ) | |
| # load embeddings of text_encoder 2 (CLIP ViT-G/14) | |
| pipeline.load_textual_inversion( | |
| state_dict["clip_g"], | |
| token=["<s0>", "<s1>"], | |
| text_encoder=pipeline.text_encoder_2, | |
| tokenizer=pipeline.tokenizer_2, | |
| ) | |
| # Unload explicitly from both text encoders abd tokenizers | |
| pipeline.unload_textual_inversion( | |
| tokens=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer | |
| ) | |
| pipeline.unload_textual_inversion( | |
| tokens=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2 | |
| ) | |
| ``` | |
| """ | |
| tokenizer = tokenizer or getattr(self, "tokenizer", None) | |
| text_encoder = text_encoder or getattr(self, "text_encoder", None) | |
| # Get textual inversion tokens and ids | |
| token_ids = [] | |
| last_special_token_id = None | |
| if tokens: | |
| if isinstance(tokens, str): | |
| tokens = [tokens] | |
| for added_token_id, added_token in tokenizer.added_tokens_decoder.items(): | |
| if not added_token.special: | |
| if added_token.content in tokens: | |
| token_ids.append(added_token_id) | |
| else: | |
| last_special_token_id = added_token_id | |
| if len(token_ids) == 0: | |
| raise ValueError("No tokens to remove found") | |
| else: | |
| tokens = [] | |
| for added_token_id, added_token in tokenizer.added_tokens_decoder.items(): | |
| if not added_token.special: | |
| token_ids.append(added_token_id) | |
| tokens.append(added_token.content) | |
| else: | |
| last_special_token_id = added_token_id | |
| # Delete from tokenizer | |
| for token_id, token_to_remove in zip(token_ids, tokens): | |
| del tokenizer._added_tokens_decoder[token_id] | |
| del tokenizer._added_tokens_encoder[token_to_remove] | |
| # Make all token ids sequential in tokenizer | |
| key_id = 1 | |
| for token_id in tokenizer.added_tokens_decoder: | |
| if token_id > last_special_token_id and token_id > last_special_token_id + key_id: | |
| token = tokenizer._added_tokens_decoder[token_id] | |
| tokenizer._added_tokens_decoder[last_special_token_id + key_id] = token | |
| del tokenizer._added_tokens_decoder[token_id] | |
| tokenizer._added_tokens_encoder[token.content] = last_special_token_id + key_id | |
| key_id += 1 | |
| tokenizer._update_trie() | |
| # Delete from text encoder | |
| text_embedding_dim = text_encoder.get_input_embeddings().embedding_dim | |
| temp_text_embedding_weights = text_encoder.get_input_embeddings().weight | |
| text_embedding_weights = temp_text_embedding_weights[: last_special_token_id + 1] | |
| to_append = [] | |
| for i in range(last_special_token_id + 1, temp_text_embedding_weights.shape[0]): | |
| if i not in token_ids: | |
| to_append.append(temp_text_embedding_weights[i].unsqueeze(0)) | |
| if len(to_append) > 0: | |
| to_append = torch.cat(to_append, dim=0) | |
| text_embedding_weights = torch.cat([text_embedding_weights, to_append], dim=0) | |
| text_embeddings_filtered = nn.Embedding(text_embedding_weights.shape[0], text_embedding_dim) | |
| text_embeddings_filtered.weight.data = text_embedding_weights | |
| text_encoder.set_input_embeddings(text_embeddings_filtered) | |
 
			
