Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024 PixArt-Sigma Authors and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import html | |
| import inspect | |
| import re | |
| import urllib.parse as ul | |
| from typing import Callable, List, Optional, Tuple, Union | |
| import torch | |
| from transformers import T5EncoderModel, T5Tokenizer | |
| from ...image_processor import PixArtImageProcessor | |
| from ...models import AutoencoderKL, PixArtTransformer2DModel | |
| from ...schedulers import KarrasDiffusionSchedulers | |
| from ...utils import ( | |
| BACKENDS_MAPPING, | |
| deprecate, | |
| is_bs4_available, | |
| is_ftfy_available, | |
| logging, | |
| replace_example_docstring, | |
| ) | |
| from ...utils.torch_utils import randn_tensor | |
| from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput | |
| from .pipeline_pixart_alpha import ( | |
| ASPECT_RATIO_256_BIN, | |
| ASPECT_RATIO_512_BIN, | |
| ASPECT_RATIO_1024_BIN, | |
| ) | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| if is_bs4_available(): | |
| from bs4 import BeautifulSoup | |
| if is_ftfy_available(): | |
| import ftfy | |
| ASPECT_RATIO_2048_BIN = { | |
| "0.25": [1024.0, 4096.0], | |
| "0.26": [1024.0, 3968.0], | |
| "0.27": [1024.0, 3840.0], | |
| "0.28": [1024.0, 3712.0], | |
| "0.32": [1152.0, 3584.0], | |
| "0.33": [1152.0, 3456.0], | |
| "0.35": [1152.0, 3328.0], | |
| "0.4": [1280.0, 3200.0], | |
| "0.42": [1280.0, 3072.0], | |
| "0.48": [1408.0, 2944.0], | |
| "0.5": [1408.0, 2816.0], | |
| "0.52": [1408.0, 2688.0], | |
| "0.57": [1536.0, 2688.0], | |
| "0.6": [1536.0, 2560.0], | |
| "0.68": [1664.0, 2432.0], | |
| "0.72": [1664.0, 2304.0], | |
| "0.78": [1792.0, 2304.0], | |
| "0.82": [1792.0, 2176.0], | |
| "0.88": [1920.0, 2176.0], | |
| "0.94": [1920.0, 2048.0], | |
| "1.0": [2048.0, 2048.0], | |
| "1.07": [2048.0, 1920.0], | |
| "1.13": [2176.0, 1920.0], | |
| "1.21": [2176.0, 1792.0], | |
| "1.29": [2304.0, 1792.0], | |
| "1.38": [2304.0, 1664.0], | |
| "1.46": [2432.0, 1664.0], | |
| "1.67": [2560.0, 1536.0], | |
| "1.75": [2688.0, 1536.0], | |
| "2.0": [2816.0, 1408.0], | |
| "2.09": [2944.0, 1408.0], | |
| "2.4": [3072.0, 1280.0], | |
| "2.5": [3200.0, 1280.0], | |
| "2.89": [3328.0, 1152.0], | |
| "3.0": [3456.0, 1152.0], | |
| "3.11": [3584.0, 1152.0], | |
| "3.62": [3712.0, 1024.0], | |
| "3.75": [3840.0, 1024.0], | |
| "3.88": [3968.0, 1024.0], | |
| "4.0": [4096.0, 1024.0], | |
| } | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| >>> import torch | |
| >>> from diffusers import PixArtSigmaPipeline | |
| >>> # You can replace the checkpoint id with "PixArt-alpha/PixArt-Sigma-XL-2-512-MS" too. | |
| >>> pipe = PixArtSigmaPipeline.from_pretrained( | |
| ... "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS", torch_dtype=torch.float16 | |
| ... ) | |
| >>> # Enable memory optimizations. | |
| >>> # pipe.enable_model_cpu_offload() | |
| >>> prompt = "A small cactus with a happy face in the Sahara desert." | |
| >>> image = pipe(prompt).images[0] | |
| ``` | |
| """ | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
| def retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps: Optional[int] = None, | |
| device: Optional[Union[str, torch.device]] = None, | |
| timesteps: Optional[List[int]] = None, | |
| sigmas: Optional[List[float]] = None, | |
| **kwargs, | |
| ): | |
| """ | |
| Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
| custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
| Args: | |
| scheduler (`SchedulerMixin`): | |
| The scheduler to get timesteps from. | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
| must be `None`. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | |
| `num_inference_steps` and `sigmas` must be `None`. | |
| sigmas (`List[float]`, *optional*): | |
| Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | |
| `num_inference_steps` and `timesteps` must be `None`. | |
| Returns: | |
| `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
| second element is the number of inference steps. | |
| """ | |
| if timesteps is not None and sigmas is not None: | |
| raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") | |
| if timesteps is not None: | |
| accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accepts_timesteps: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" timestep schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| elif sigmas is not None: | |
| accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accept_sigmas: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" sigmas schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| else: | |
| scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| return timesteps, num_inference_steps | |
| class PixArtSigmaPipeline(DiffusionPipeline): | |
| r""" | |
| Pipeline for text-to-image generation using PixArt-Sigma. | |
| """ | |
| bad_punct_regex = re.compile( | |
| r"[" | |
| + "#®•©™&@·º½¾¿¡§~" | |
| + r"\)" | |
| + r"\(" | |
| + r"\]" | |
| + r"\[" | |
| + r"\}" | |
| + r"\{" | |
| + r"\|" | |
| + "\\" | |
| + r"\/" | |
| + r"\*" | |
| + r"]{1,}" | |
| ) # noqa | |
| _optional_components = ["tokenizer", "text_encoder"] | |
| model_cpu_offload_seq = "text_encoder->transformer->vae" | |
| def __init__( | |
| self, | |
| tokenizer: T5Tokenizer, | |
| text_encoder: T5EncoderModel, | |
| vae: AutoencoderKL, | |
| transformer: PixArtTransformer2DModel, | |
| scheduler: KarrasDiffusionSchedulers, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| self.image_processor = PixArtImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
| # Copied from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha.PixArtAlphaPipeline.encode_prompt with 120->300 | |
| def encode_prompt( | |
| self, | |
| prompt: Union[str, List[str]], | |
| do_classifier_free_guidance: bool = True, | |
| negative_prompt: str = "", | |
| num_images_per_prompt: int = 1, | |
| device: Optional[torch.device] = None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| prompt_attention_mask: Optional[torch.Tensor] = None, | |
| negative_prompt_attention_mask: Optional[torch.Tensor] = None, | |
| clean_caption: bool = False, | |
| max_sequence_length: int = 300, | |
| **kwargs, | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` | |
| instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For | |
| PixArt-Alpha, this should be "". | |
| do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): | |
| whether to use classifier free guidance or not | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| number of images that should be generated per prompt | |
| device: (`torch.device`, *optional*): | |
| torch device to place the resulting embeddings on | |
| prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative text embeddings. For PixArt-Alpha, it's should be the embeddings of the "" | |
| string. | |
| clean_caption (`bool`, defaults to `False`): | |
| If `True`, the function will preprocess and clean the provided caption before encoding. | |
| max_sequence_length (`int`, defaults to 300): Maximum sequence length to use for the prompt. | |
| """ | |
| if "mask_feature" in kwargs: | |
| deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version." | |
| deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False) | |
| if device is None: | |
| device = self._execution_device | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| # See Section 3.1. of the paper. | |
| max_length = max_sequence_length | |
| if prompt_embeds is None: | |
| prompt = self._text_preprocessing(prompt, clean_caption=clean_caption) | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| add_special_tokens=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
| text_input_ids, untruncated_ids | |
| ): | |
| removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because T5 can only handle sequences up to" | |
| f" {max_length} tokens: {removed_text}" | |
| ) | |
| prompt_attention_mask = text_inputs.attention_mask | |
| prompt_attention_mask = prompt_attention_mask.to(device) | |
| prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask) | |
| prompt_embeds = prompt_embeds[0] | |
| if self.text_encoder is not None: | |
| dtype = self.text_encoder.dtype | |
| elif self.transformer is not None: | |
| dtype = self.transformer.dtype | |
| else: | |
| dtype = None | |
| prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| prompt_attention_mask = prompt_attention_mask.view(bs_embed, -1) | |
| prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance and negative_prompt_embeds is None: | |
| uncond_tokens = [negative_prompt] * batch_size if isinstance(negative_prompt, str) else negative_prompt | |
| uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption) | |
| max_length = prompt_embeds.shape[1] | |
| uncond_input = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_attention_mask=True, | |
| add_special_tokens=True, | |
| return_tensors="pt", | |
| ) | |
| negative_prompt_attention_mask = uncond_input.attention_mask | |
| negative_prompt_attention_mask = negative_prompt_attention_mask.to(device) | |
| negative_prompt_embeds = self.text_encoder( | |
| uncond_input.input_ids.to(device), attention_mask=negative_prompt_attention_mask | |
| ) | |
| negative_prompt_embeds = negative_prompt_embeds[0] | |
| if do_classifier_free_guidance: | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = negative_prompt_embeds.shape[1] | |
| negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) | |
| negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| negative_prompt_attention_mask = negative_prompt_attention_mask.view(bs_embed, -1) | |
| negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1) | |
| else: | |
| negative_prompt_embeds = None | |
| negative_prompt_attention_mask = None | |
| return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| # Copied from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha.PixArtAlphaPipeline.check_inputs | |
| def check_inputs( | |
| self, | |
| prompt, | |
| height, | |
| width, | |
| negative_prompt, | |
| callback_steps, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=None, | |
| prompt_attention_mask=None, | |
| negative_prompt_attention_mask=None, | |
| ): | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| if (callback_steps is None) or ( | |
| callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
| ): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if prompt_embeds is not None and prompt_attention_mask is None: | |
| raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.") | |
| if negative_prompt_embeds is not None and negative_prompt_attention_mask is None: | |
| raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.") | |
| if prompt_embeds is not None and negative_prompt_embeds is not None: | |
| if prompt_embeds.shape != negative_prompt_embeds.shape: | |
| raise ValueError( | |
| "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
| f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
| f" {negative_prompt_embeds.shape}." | |
| ) | |
| if prompt_attention_mask.shape != negative_prompt_attention_mask.shape: | |
| raise ValueError( | |
| "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but" | |
| f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`" | |
| f" {negative_prompt_attention_mask.shape}." | |
| ) | |
| # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing | |
| def _text_preprocessing(self, text, clean_caption=False): | |
| if clean_caption and not is_bs4_available(): | |
| logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`")) | |
| logger.warning("Setting `clean_caption` to False...") | |
| clean_caption = False | |
| if clean_caption and not is_ftfy_available(): | |
| logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`")) | |
| logger.warning("Setting `clean_caption` to False...") | |
| clean_caption = False | |
| if not isinstance(text, (tuple, list)): | |
| text = [text] | |
| def process(text: str): | |
| if clean_caption: | |
| text = self._clean_caption(text) | |
| text = self._clean_caption(text) | |
| else: | |
| text = text.lower().strip() | |
| return text | |
| return [process(t) for t in text] | |
| # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption | |
| def _clean_caption(self, caption): | |
| caption = str(caption) | |
| caption = ul.unquote_plus(caption) | |
| caption = caption.strip().lower() | |
| caption = re.sub("<person>", "person", caption) | |
| # urls: | |
| caption = re.sub( | |
| r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa | |
| "", | |
| caption, | |
| ) # regex for urls | |
| caption = re.sub( | |
| r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa | |
| "", | |
| caption, | |
| ) # regex for urls | |
| # html: | |
| caption = BeautifulSoup(caption, features="html.parser").text | |
| # @<nickname> | |
| caption = re.sub(r"@[\w\d]+\b", "", caption) | |
| # 31C0—31EF CJK Strokes | |
| # 31F0—31FF Katakana Phonetic Extensions | |
| # 3200—32FF Enclosed CJK Letters and Months | |
| # 3300—33FF CJK Compatibility | |
| # 3400—4DBF CJK Unified Ideographs Extension A | |
| # 4DC0—4DFF Yijing Hexagram Symbols | |
| # 4E00—9FFF CJK Unified Ideographs | |
| caption = re.sub(r"[\u31c0-\u31ef]+", "", caption) | |
| caption = re.sub(r"[\u31f0-\u31ff]+", "", caption) | |
| caption = re.sub(r"[\u3200-\u32ff]+", "", caption) | |
| caption = re.sub(r"[\u3300-\u33ff]+", "", caption) | |
| caption = re.sub(r"[\u3400-\u4dbf]+", "", caption) | |
| caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption) | |
| caption = re.sub(r"[\u4e00-\u9fff]+", "", caption) | |
| ####################################################### | |
| # все виды тире / all types of dash --> "-" | |
| caption = re.sub( | |
| r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa | |
| "-", | |
| caption, | |
| ) | |
| # кавычки к одному стандарту | |
| caption = re.sub(r"[`´«»“”¨]", '"', caption) | |
| caption = re.sub(r"[‘’]", "'", caption) | |
| # " | |
| caption = re.sub(r""?", "", caption) | |
| # & | |
| caption = re.sub(r"&", "", caption) | |
| # ip adresses: | |
| caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption) | |
| # article ids: | |
| caption = re.sub(r"\d:\d\d\s+$", "", caption) | |
| # \n | |
| caption = re.sub(r"\\n", " ", caption) | |
| # "#123" | |
| caption = re.sub(r"#\d{1,3}\b", "", caption) | |
| # "#12345.." | |
| caption = re.sub(r"#\d{5,}\b", "", caption) | |
| # "123456.." | |
| caption = re.sub(r"\b\d{6,}\b", "", caption) | |
| # filenames: | |
| caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption) | |
| # | |
| caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT""" | |
| caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT""" | |
| caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT | |
| caption = re.sub(r"\s+\.\s+", r" ", caption) # " . " | |
| # this-is-my-cute-cat / this_is_my_cute_cat | |
| regex2 = re.compile(r"(?:\-|\_)") | |
| if len(re.findall(regex2, caption)) > 3: | |
| caption = re.sub(regex2, " ", caption) | |
| caption = ftfy.fix_text(caption) | |
| caption = html.unescape(html.unescape(caption)) | |
| caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640 | |
| caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc | |
| caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231 | |
| caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption) | |
| caption = re.sub(r"(free\s)?download(\sfree)?", "", caption) | |
| caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption) | |
| caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption) | |
| caption = re.sub(r"\bpage\s+\d+\b", "", caption) | |
| caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a... | |
| caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption) | |
| caption = re.sub(r"\b\s+\:\s+", r": ", caption) | |
| caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption) | |
| caption = re.sub(r"\s+", " ", caption) | |
| caption.strip() | |
| caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption) | |
| caption = re.sub(r"^[\'\_,\-\:;]", r"", caption) | |
| caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption) | |
| caption = re.sub(r"^\.\S+$", "", caption) | |
| return caption.strip() | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents | |
| def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): | |
| shape = ( | |
| batch_size, | |
| num_channels_latents, | |
| int(height) // self.vae_scale_factor, | |
| int(width) // self.vae_scale_factor, | |
| ) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| else: | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| negative_prompt: str = "", | |
| num_inference_steps: int = 20, | |
| timesteps: List[int] = None, | |
| sigmas: List[float] = None, | |
| guidance_scale: float = 4.5, | |
| num_images_per_prompt: Optional[int] = 1, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.Tensor] = None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| prompt_attention_mask: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_attention_mask: Optional[torch.Tensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, | |
| callback_steps: int = 1, | |
| clean_caption: bool = True, | |
| use_resolution_binning: bool = True, | |
| max_sequence_length: int = 300, | |
| **kwargs, | |
| ) -> Union[ImagePipelineOutput, Tuple]: | |
| """ | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
| instead. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| num_inference_steps (`int`, *optional*, defaults to 100): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | |
| in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | |
| passed will be used. Must be in descending order. | |
| sigmas (`List[float]`, *optional*): | |
| Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in | |
| their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed | |
| will be used. | |
| guidance_scale (`float`, *optional*, defaults to 4.5): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| height (`int`, *optional*, defaults to self.unet.config.sample_size): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to self.unet.config.sample_size): | |
| The width in pixels of the generated image. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
| [`schedulers.DDIMScheduler`], will be ignored for others. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.Tensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| prompt_attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask for text embeddings. | |
| negative_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not | |
| provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. | |
| negative_prompt_attention_mask (`torch.Tensor`, *optional*): | |
| Pre-generated attention mask for negative text embeddings. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that will be called every `callback_steps` steps during inference. The function will be | |
| called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function will be called. If not specified, the callback will be | |
| called at every step. | |
| clean_caption (`bool`, *optional*, defaults to `True`): | |
| Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to | |
| be installed. If the dependencies are not installed, the embeddings will be created from the raw | |
| prompt. | |
| use_resolution_binning (`bool` defaults to `True`): | |
| If set to `True`, the requested height and width are first mapped to the closest resolutions using | |
| `ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to | |
| the requested resolution. Useful for generating non-square images. | |
| max_sequence_length (`int` defaults to 300): Maximum sequence length to use with the `prompt`. | |
| Examples: | |
| Returns: | |
| [`~pipelines.ImagePipelineOutput`] or `tuple`: | |
| If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is | |
| returned where the first element is a list with the generated images | |
| """ | |
| # 1. Check inputs. Raise error if not correct | |
| height = height or self.transformer.config.sample_size * self.vae_scale_factor | |
| width = width or self.transformer.config.sample_size * self.vae_scale_factor | |
| if use_resolution_binning: | |
| if self.transformer.config.sample_size == 256: | |
| aspect_ratio_bin = ASPECT_RATIO_2048_BIN | |
| elif self.transformer.config.sample_size == 128: | |
| aspect_ratio_bin = ASPECT_RATIO_1024_BIN | |
| elif self.transformer.config.sample_size == 64: | |
| aspect_ratio_bin = ASPECT_RATIO_512_BIN | |
| elif self.transformer.config.sample_size == 32: | |
| aspect_ratio_bin = ASPECT_RATIO_256_BIN | |
| else: | |
| raise ValueError("Invalid sample size") | |
| orig_height, orig_width = height, width | |
| height, width = self.image_processor.classify_height_width_bin(height, width, ratios=aspect_ratio_bin) | |
| self.check_inputs( | |
| prompt, | |
| height, | |
| width, | |
| negative_prompt, | |
| callback_steps, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| prompt_attention_mask, | |
| negative_prompt_attention_mask, | |
| ) | |
| # 2. Default height and width to transformer | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Encode input prompt | |
| ( | |
| prompt_embeds, | |
| prompt_attention_mask, | |
| negative_prompt_embeds, | |
| negative_prompt_attention_mask, | |
| ) = self.encode_prompt( | |
| prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt=negative_prompt, | |
| num_images_per_prompt=num_images_per_prompt, | |
| device=device, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| prompt_attention_mask=prompt_attention_mask, | |
| negative_prompt_attention_mask=negative_prompt_attention_mask, | |
| clean_caption=clean_caption, | |
| max_sequence_length=max_sequence_length, | |
| ) | |
| if do_classifier_free_guidance: | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
| prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0) | |
| # 4. Prepare timesteps | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| self.scheduler, num_inference_steps, device, timesteps, sigmas | |
| ) | |
| # 5. Prepare latents. | |
| latent_channels = self.transformer.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| latent_channels, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 6.1 Prepare micro-conditions. | |
| added_cond_kwargs = {"resolution": None, "aspect_ratio": None} | |
| # 7. Denoising loop | |
| num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| current_timestep = t | |
| if not torch.is_tensor(current_timestep): | |
| # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
| # This would be a good case for the `match` statement (Python 3.10+) | |
| is_mps = latent_model_input.device.type == "mps" | |
| if isinstance(current_timestep, float): | |
| dtype = torch.float32 if is_mps else torch.float64 | |
| else: | |
| dtype = torch.int32 if is_mps else torch.int64 | |
| current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device) | |
| elif len(current_timestep.shape) == 0: | |
| current_timestep = current_timestep[None].to(latent_model_input.device) | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| current_timestep = current_timestep.expand(latent_model_input.shape[0]) | |
| # predict noise model_output | |
| noise_pred = self.transformer( | |
| latent_model_input, | |
| encoder_hidden_states=prompt_embeds, | |
| encoder_attention_mask=prompt_attention_mask, | |
| timestep=current_timestep, | |
| added_cond_kwargs=added_cond_kwargs, | |
| return_dict=False, | |
| )[0] | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # learned sigma | |
| if self.transformer.config.out_channels // 2 == latent_channels: | |
| noise_pred = noise_pred.chunk(2, dim=1)[0] | |
| else: | |
| noise_pred = noise_pred | |
| # compute previous image: x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| step_idx = i // getattr(self.scheduler, "order", 1) | |
| callback(step_idx, t, latents) | |
| if not output_type == "latent": | |
| image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
| if use_resolution_binning: | |
| image = self.image_processor.resize_and_crop_tensor(image, orig_width, orig_height) | |
| else: | |
| image = latents | |
| if not output_type == "latent": | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image,) | |
| return ImagePipelineOutput(images=image) | |