Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import Callable, List, Optional, Union | |
| import numpy as np | |
| import PIL.Image | |
| import torch | |
| from PIL import Image | |
| from transformers import ( | |
| XLMRobertaTokenizer, | |
| ) | |
| from ...models import UNet2DConditionModel, VQModel | |
| from ...schedulers import DDIMScheduler | |
| from ...utils import ( | |
| logging, | |
| replace_example_docstring, | |
| ) | |
| from ...utils.torch_utils import randn_tensor | |
| from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput | |
| from .text_encoder import MultilingualCLIP | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| >>> from diffusers import KandinskyImg2ImgPipeline, KandinskyPriorPipeline | |
| >>> from diffusers.utils import load_image | |
| >>> import torch | |
| >>> pipe_prior = KandinskyPriorPipeline.from_pretrained( | |
| ... "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16 | |
| ... ) | |
| >>> pipe_prior.to("cuda") | |
| >>> prompt = "A red cartoon frog, 4k" | |
| >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) | |
| >>> pipe = KandinskyImg2ImgPipeline.from_pretrained( | |
| ... "kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16 | |
| ... ) | |
| >>> pipe.to("cuda") | |
| >>> init_image = load_image( | |
| ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" | |
| ... "/kandinsky/frog.png" | |
| ... ) | |
| >>> image = pipe( | |
| ... prompt, | |
| ... image=init_image, | |
| ... image_embeds=image_emb, | |
| ... negative_image_embeds=zero_image_emb, | |
| ... height=768, | |
| ... width=768, | |
| ... num_inference_steps=100, | |
| ... strength=0.2, | |
| ... ).images | |
| >>> image[0].save("red_frog.png") | |
| ``` | |
| """ | |
| def get_new_h_w(h, w, scale_factor=8): | |
| new_h = h // scale_factor**2 | |
| if h % scale_factor**2 != 0: | |
| new_h += 1 | |
| new_w = w // scale_factor**2 | |
| if w % scale_factor**2 != 0: | |
| new_w += 1 | |
| return new_h * scale_factor, new_w * scale_factor | |
| def prepare_image(pil_image, w=512, h=512): | |
| pil_image = pil_image.resize((w, h), resample=Image.BICUBIC, reducing_gap=1) | |
| arr = np.array(pil_image.convert("RGB")) | |
| arr = arr.astype(np.float32) / 127.5 - 1 | |
| arr = np.transpose(arr, [2, 0, 1]) | |
| image = torch.from_numpy(arr).unsqueeze(0) | |
| return image | |
| class KandinskyImg2ImgPipeline(DiffusionPipeline): | |
| """ | |
| Pipeline for image-to-image generation using Kandinsky | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
| library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
| Args: | |
| text_encoder ([`MultilingualCLIP`]): | |
| Frozen text-encoder. | |
| tokenizer ([`XLMRobertaTokenizer`]): | |
| Tokenizer of class | |
| scheduler ([`DDIMScheduler`]): | |
| A scheduler to be used in combination with `unet` to generate image latents. | |
| unet ([`UNet2DConditionModel`]): | |
| Conditional U-Net architecture to denoise the image embedding. | |
| movq ([`VQModel`]): | |
| MoVQ image encoder and decoder | |
| """ | |
| model_cpu_offload_seq = "text_encoder->unet->movq" | |
| def __init__( | |
| self, | |
| text_encoder: MultilingualCLIP, | |
| movq: VQModel, | |
| tokenizer: XLMRobertaTokenizer, | |
| unet: UNet2DConditionModel, | |
| scheduler: DDIMScheduler, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| scheduler=scheduler, | |
| movq=movq, | |
| ) | |
| self.movq_scale_factor = 2 ** (len(self.movq.config.block_out_channels) - 1) | |
| def get_timesteps(self, num_inference_steps, strength, device): | |
| # get the original timestep using init_timestep | |
| init_timestep = min(int(num_inference_steps * strength), num_inference_steps) | |
| t_start = max(num_inference_steps - init_timestep, 0) | |
| timesteps = self.scheduler.timesteps[t_start:] | |
| return timesteps, num_inference_steps - t_start | |
| def prepare_latents(self, latents, latent_timestep, shape, dtype, device, generator, scheduler): | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| else: | |
| if latents.shape != shape: | |
| raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
| latents = latents.to(device) | |
| latents = latents * scheduler.init_noise_sigma | |
| shape = latents.shape | |
| noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| latents = self.add_noise(latents, noise, latent_timestep) | |
| return latents | |
| def _encode_prompt( | |
| self, | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt=None, | |
| ): | |
| batch_size = len(prompt) if isinstance(prompt, list) else 1 | |
| # get prompt text embeddings | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=77, | |
| truncation=True, | |
| return_attention_mask=True, | |
| add_special_tokens=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | |
| removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| text_input_ids = text_input_ids.to(device) | |
| text_mask = text_inputs.attention_mask.to(device) | |
| prompt_embeds, text_encoder_hidden_states = self.text_encoder( | |
| input_ids=text_input_ids, attention_mask=text_mask | |
| ) | |
| prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
| text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) | |
| text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0) | |
| if do_classifier_free_guidance: | |
| uncond_tokens: List[str] | |
| if negative_prompt is None: | |
| uncond_tokens = [""] * batch_size | |
| elif type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt] | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| uncond_tokens = negative_prompt | |
| uncond_input = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=77, | |
| truncation=True, | |
| return_attention_mask=True, | |
| add_special_tokens=True, | |
| return_tensors="pt", | |
| ) | |
| uncond_text_input_ids = uncond_input.input_ids.to(device) | |
| uncond_text_mask = uncond_input.attention_mask.to(device) | |
| negative_prompt_embeds, uncond_text_encoder_hidden_states = self.text_encoder( | |
| input_ids=uncond_text_input_ids, attention_mask=uncond_text_mask | |
| ) | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = negative_prompt_embeds.shape[1] | |
| negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt) | |
| negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len) | |
| seq_len = uncond_text_encoder_hidden_states.shape[1] | |
| uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1) | |
| uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view( | |
| batch_size * num_images_per_prompt, seq_len, -1 | |
| ) | |
| uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0) | |
| # done duplicates | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
| text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states]) | |
| text_mask = torch.cat([uncond_text_mask, text_mask]) | |
| return prompt_embeds, text_encoder_hidden_states, text_mask | |
| # add_noise method to overwrite the one in schedule because it use a different beta schedule for adding noise vs sampling | |
| def add_noise( | |
| self, | |
| original_samples: torch.Tensor, | |
| noise: torch.Tensor, | |
| timesteps: torch.IntTensor, | |
| ) -> torch.Tensor: | |
| betas = torch.linspace(0.0001, 0.02, 1000, dtype=torch.float32) | |
| alphas = 1.0 - betas | |
| alphas_cumprod = torch.cumprod(alphas, dim=0) | |
| alphas_cumprod = alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype) | |
| timesteps = timesteps.to(original_samples.device) | |
| sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 | |
| sqrt_alpha_prod = sqrt_alpha_prod.flatten() | |
| while len(sqrt_alpha_prod.shape) < len(original_samples.shape): | |
| sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) | |
| sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 | |
| sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() | |
| while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): | |
| sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) | |
| noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise | |
| return noisy_samples | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]], | |
| image: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]], | |
| image_embeds: torch.Tensor, | |
| negative_image_embeds: torch.Tensor, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| height: int = 512, | |
| width: int = 512, | |
| num_inference_steps: int = 100, | |
| strength: float = 0.3, | |
| guidance_scale: float = 7.0, | |
| num_images_per_prompt: int = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| output_type: Optional[str] = "pil", | |
| callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, | |
| callback_steps: int = 1, | |
| return_dict: bool = True, | |
| ): | |
| """ | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`): | |
| The prompt or prompts to guide the image generation. | |
| image (`torch.Tensor`, `PIL.Image.Image`): | |
| `Image`, or tensor representing an image batch, that will be used as the starting point for the | |
| process. | |
| image_embeds (`torch.Tensor` or `List[torch.Tensor]`): | |
| The clip image embeddings for text prompt, that will be used to condition the image generation. | |
| negative_image_embeds (`torch.Tensor` or `List[torch.Tensor]`): | |
| The clip image embeddings for negative text prompt, will be used to condition the image generation. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | |
| if `guidance_scale` is less than `1`). | |
| height (`int`, *optional*, defaults to 512): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to 512): | |
| The width in pixels of the generated image. | |
| num_inference_steps (`int`, *optional*, defaults to 100): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| strength (`float`, *optional*, defaults to 0.3): | |
| Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image` | |
| will be used as a starting point, adding more noise to it the larger the `strength`. The number of | |
| denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will | |
| be maximum and the denoising process will run for the full number of iterations specified in | |
| `num_inference_steps`. A value of 1, therefore, essentially ignores `image`. | |
| guidance_scale (`float`, *optional*, defaults to 4.0): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` | |
| (`np.array`) or `"pt"` (`torch.Tensor`). | |
| callback (`Callable`, *optional*): | |
| A function that calls every `callback_steps` steps during inference. The function is called with the | |
| following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function is called. If not specified, the callback is called at | |
| every step. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. | |
| Examples: | |
| Returns: | |
| [`~pipelines.ImagePipelineOutput`] or `tuple` | |
| """ | |
| # 1. Define call parameters | |
| if isinstance(prompt, str): | |
| batch_size = 1 | |
| elif isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| device = self._execution_device | |
| batch_size = batch_size * num_images_per_prompt | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 2. get text and image embeddings | |
| prompt_embeds, text_encoder_hidden_states, _ = self._encode_prompt( | |
| prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt | |
| ) | |
| if isinstance(image_embeds, list): | |
| image_embeds = torch.cat(image_embeds, dim=0) | |
| if isinstance(negative_image_embeds, list): | |
| negative_image_embeds = torch.cat(negative_image_embeds, dim=0) | |
| if do_classifier_free_guidance: | |
| image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
| negative_image_embeds = negative_image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
| image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0).to( | |
| dtype=prompt_embeds.dtype, device=device | |
| ) | |
| # 3. pre-processing initial image | |
| if not isinstance(image, list): | |
| image = [image] | |
| if not all(isinstance(i, (PIL.Image.Image, torch.Tensor)) for i in image): | |
| raise ValueError( | |
| f"Input is in incorrect format: {[type(i) for i in image]}. Currently, we only support PIL image and pytorch tensor" | |
| ) | |
| image = torch.cat([prepare_image(i, width, height) for i in image], dim=0) | |
| image = image.to(dtype=prompt_embeds.dtype, device=device) | |
| latents = self.movq.encode(image)["latents"] | |
| latents = latents.repeat_interleave(num_images_per_prompt, dim=0) | |
| # 4. set timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps_tensor, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) | |
| # the formular to calculate timestep for add_noise is taken from the original kandinsky repo | |
| latent_timestep = int(self.scheduler.config.num_train_timesteps * strength) - 2 | |
| latent_timestep = torch.tensor([latent_timestep] * batch_size, dtype=timesteps_tensor.dtype, device=device) | |
| num_channels_latents = self.unet.config.in_channels | |
| height, width = get_new_h_w(height, width, self.movq_scale_factor) | |
| # 5. Create initial latent | |
| latents = self.prepare_latents( | |
| latents, | |
| latent_timestep, | |
| (batch_size, num_channels_latents, height, width), | |
| text_encoder_hidden_states.dtype, | |
| device, | |
| generator, | |
| self.scheduler, | |
| ) | |
| # 6. Denoising loop | |
| for i, t in enumerate(self.progress_bar(timesteps_tensor)): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| added_cond_kwargs = {"text_embeds": prompt_embeds, "image_embeds": image_embeds} | |
| noise_pred = self.unet( | |
| sample=latent_model_input, | |
| timestep=t, | |
| encoder_hidden_states=text_encoder_hidden_states, | |
| added_cond_kwargs=added_cond_kwargs, | |
| return_dict=False, | |
| )[0] | |
| if do_classifier_free_guidance: | |
| noise_pred, variance_pred = noise_pred.split(latents.shape[1], dim=1) | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| _, variance_pred_text = variance_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| noise_pred = torch.cat([noise_pred, variance_pred_text], dim=1) | |
| if not ( | |
| hasattr(self.scheduler.config, "variance_type") | |
| and self.scheduler.config.variance_type in ["learned", "learned_range"] | |
| ): | |
| noise_pred, _ = noise_pred.split(latents.shape[1], dim=1) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step( | |
| noise_pred, | |
| t, | |
| latents, | |
| generator=generator, | |
| ).prev_sample | |
| if callback is not None and i % callback_steps == 0: | |
| step_idx = i // getattr(self.scheduler, "order", 1) | |
| callback(step_idx, t, latents) | |
| # 7. post-processing | |
| image = self.movq.decode(latents, force_not_quantize=True)["sample"] | |
| self.maybe_free_model_hooks() | |
| if output_type not in ["pt", "np", "pil"]: | |
| raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}") | |
| if output_type in ["np", "pil"]: | |
| image = image * 0.5 + 0.5 | |
| image = image.clamp(0, 1) | |
| image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
| if output_type == "pil": | |
| image = self.numpy_to_pil(image) | |
| if not return_dict: | |
| return (image,) | |
| return ImagePipelineOutput(images=image) | |